精英家教網 > 高中數學 > 題目詳情

【題目】設集合A{1,1}集合B{x|x22axb0}BBA,求實數a、b的值.

【答案】a=-1,b1, ab1, a0,b=-1

【解析】試題分析:集合A={-1,1},集合B={x|x2-2axb=0},若BBAB中元素是關于x的方程x2-2axb=0的根,且B{-1,1},∴關于x的方程x2-2axb=0的根只能是-11,但要注意方程有兩個相等根的條件是Δ=0.B={x|x2-2axb=0}A={-1,1},且B,B={-1}B={1}B={-1,1},分情況進行討論即可.

試題解析:

B中元素是關于x的方程x22axb0的根,且B{1,1}

∴關于x的方程x22axb0的根只能是-11,但要注意方程有兩個相等根的條件是Δ0.

B{x|x22axb0}A{1,1},且B,

B{1}B{1}B{1,1}

B{1}時,

Δ4a24b012ab0,

解得a=-1b1.

B{1}時,

Δ4a24b012ab0,

解得ab1.

B{1,1}時,

(1)12a,(1)×1b

解得a0,b=-1.

綜上:a=-1,b1;或 ab1;或a0,b=-1

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知等比數列{an}中,a2·a84a5,等差數列{bn}中,b4+b6=a5,則數列{bn}的前9項和S9等于( )

A.9 B.18 C.36 D.72

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】命題有理數是無限不循環小數,整數是有理數,所以整數是無限不循環小數是假命題,推理錯誤的原因是()

A. 使用了歸納推理 B. 使用了類比推理

C. 使用了“三段論”,但大前提錯誤 D. 使用了三段論,但小前提錯誤

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列能用流程圖表示的是( )

A. 某校學生會組織 B. “海爾集團的管理關系

C. 春種分為三個工序:平整土地,打畦,插秧 D. 某商場貨物的分布

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列命題:

多面體是若干個平面多邊形所圍成的圖形;

有一個平面是多邊形,其余各

面是三角形的幾何體是棱錐;

有兩個面是相同邊數的多邊形,其余各面是梯形的多面體是棱臺.

其中正確命題的個數是

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若集合A{1,2,3}A中至少含有一個奇數,則這樣的集合A (  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={1,2},B={x|ax-2=0},若BA,則a的值不可能是 (  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有一段“三段論”推理是這樣的:“對于可導函數f(x),如果f′(x0)=0,那么x=x0是函數f(x)的極值點;因為函數f(x)=x3在x=0處的導數值f′(0)=0,所以x=0是函數f(x)=x3的極值點.”以上推理中
(1)大前提錯誤
(2)小前提錯誤
(3)推理形式正確
(4)結論正確
你認為正確的序號為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)是R上的增函數,對實數a,b,若a+b>0,則有(  )

A. f(a)+f(b)>f(-a)+f(-b) B. f(a)+f(b)<f(-a)+f(-b)

C. f(a)-f(b)>f(-a)-f(-b) D. f(a)-f(b)<f(-a)-f(-b)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视