【題目】關于的方程
有兩個不等實根,則實數
的取值范圍是__________.
【答案】
【解析】顯然是方程的一個根,
當時,分離常數可得
,設
,則
,且
設
,則
在
上單調遞增,在
上單調遞減,
,所以
恒成立,
在
上單調遞減,在
上單調遞減,并且
時,
并且
時,
并且
時,
時有一個零點
綜上可得: 時有兩個零點.
點晴:本題考查函數導數與單調性.確定零點的個數問題:可利用數形結合的辦法判斷交點個數,如果函數較為復雜,可結合導數知識確定極值點和單調區間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點的問題,可參變分離,轉化為求函數的值域問題處理. 恒成立問題以及可轉化為恒成立問題的問題,往往可利用參變分離的方法,轉化為求函數最值處理.也可構造新函數然后利用導數來求解.注意利用數形結合的數學思想方法.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sin2x+2cos2x+m(0≤x≤
).
(1)若函數f(x)的最大值為6,求常數m的值;
(2)若函數f(x)有兩個零點x1和x2 , 求m的取值范圍,并求x1和x2的值;
(3)在(1)的條件下,若g(x)=(t﹣1)f(x)﹣ (t≥2),討論函數g(x)的零點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從高一年級學生中隨機抽取部分學生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統計,得到如圖所示的頻率分布直方圖.已知高一年級共有學生600名,據此估計,該模塊測試成績不少于60分的學生人數為( )
A.588
B.480
C.450
D.120
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為評估兩套促銷活動方案(方案1運作費用為5元/件;方案2的運作費用為2元/件),在某地區部分營銷網點進行試點(每個試點網點只采用一種促銷活動方案),運作一年后,對比該地區上一年度的銷售情況,制作相應的等高條形圖如圖所示.
(1)請根據等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);
(2)已知該公司產品的成本為10元/件(未包括促銷活動運作費用),為制定本年度該地區的產品銷售價格,統計上一年度的8組售價(單位:元/件,整數)和銷量
(單位:件)(
)如下表所示:
售價 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①請根據下列數據計算相應的相關指數,并根據計算結果,選擇合適的回歸模型進行擬合;
②根據所選回歸模型,分析售價定為多少時?利潤
可以達到最大.
49428.74 | 11512.43 | 175.26 | |
124650 |
(附:相關指數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知中心在原點,離心率為
的橢圓
的一個焦點為圓
:
的圓心.
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓
上一點,過
作兩條斜率之積為
的直線
,
,當直線
,
都與圓
相切時,求
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
,左焦點是
.
(1)若左焦點與橢圓
的短軸的兩個端點是正三角形的三個頂點,點
在橢圓
上.求橢圓
的方程;
(2)過原點且斜率為的直線
與(1)中的橢圓
交于不同的兩點
,設
,求四邊形
的面積取得最大值時直線
的方程;
(3)過左焦點的直線
交橢圓
于
兩點,直線
交直線
于點
,其中
是常數,設
,
,計算
的值(用
的代數式表示).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com