【題目】設,
.已知函數
,
.
(Ⅰ)求的單調區間;
(Ⅱ)已知函數和
的圖象在公共點(x0,y0)處有相同的切線,
(i)求證:在
處的導數等于0;
(ii)若關于x的不等式在區間
上恒成立,求b的取值范圍.
【答案】(I)單調遞增區間為,
,單調遞減區間為
.(II)(i)見解析.(ii)
.
【解析】
試題求導數后因式分解根據,得出
,根據導數的符號判斷函數的單調性,給出單調區間,對
求導,根據函數
和
的圖象在公共點(x0,y0)處有相同的切線,解得
,根據
的單調性可知
在
上恒成立,關于x的不等式
在區間
上恒成立,得出
,得
,
,
求出的范圍,得出
的范圍.
試題解析:(I)由,可得
,
令,解得
,或
.由
,得
.
當變化時,
,
的變化情況如下表:
所以,的單調遞增區間為
,
,單調遞減區間為
.
(II)(i)因為,由題意知
,
所以,解得
.
所以,在
處的導數等于0.
(ii)因為,
,由
,可得
.
又因為,
,故
為
的極大值點,由(I)知
.
另一方面,由于,故
,
由(I)知在
內單調遞增,在
內單調遞減,
故當時,
在
上恒成立,從而
在
上恒成立.
由,得
,
.
令,
,所以
,
令,解得
(舍去),或
.
因為,
,
,故
的值域為
.
所以,的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】某體育老師隨機調查了100名同學,詢問他們最喜歡的球類運動,統計數據如表所示.已知最喜歡足球的人數等于最喜歡排球和最喜歡羽毛球的人數之和.
最喜歡的球類運動 | 足球 | 籃球 | 排球 | 乒乓球 | 羽毛球 | 網球 |
人數 | a | 20 | 10 | 15 | b | 5 |
(1)求的值;
(2)將足球、籃球、排球統稱為“大球”,將乒乓球、羽毛球、網球統稱為“小球”.現按照喜歡大、小球的人數用分層抽樣的方式從調查的同學中抽取5人,再從這5人中任選2人,求這2人中至少有一人喜歡小球的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數的圖象上存在關于直線
對稱的不同兩點,則稱
具有性質
.已知
為常數,函數
,
,對于命題:①存在
,使得
具有性質
;②存在
,使得
具有性質
,下列判斷正確的是( )
A.①和②均為真命題B.①和②均是假命題
C.①是真命題,②是假命題D.①是假命題,②是真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定橢圓,稱圓
為橢圓
的“伴隨圓”.已知點
是橢圓
上的點
(1)若過點的直線
與橢圓
有且只有一個公共點,求
被橢圓
的伴隨圓
所截得的弦長:
(2)是橢圓
上的兩點,設
是直線
的斜率,且滿足
,試問:直線
是否過定點,如果過定點,求出定點坐標,如果不過定點,試說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大型單位舉行了一次全體員工都參加的考試,從中隨機抽取了20人的分數.以下莖葉圖記錄了他們的考試分數(以十位數字為莖,個位數字為葉):
若分數不低于95分,則稱該員工的成績為“優秀”.
(1)從這20人中任取3人,求恰有1人成績“優秀”的概率;
(2)根據這20人的分數補全下方的頻率分布表和頻率分布直方圖,并根據頻率分布直方圖解決下面的問題.
組別 | 分組 | 頻數 | 頻率 | |
1 | ||||
2 | ||||
3 | ||||
4 |
①估計所有員工的平均分數(同一組中的數據用該組區間的中點值作代表);
②若從所有員工中任選3人,記表示抽到的員工成績為“優秀”的人數,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知梯形中,
,
,
是
的中點.
,
、
分別是
、
上的動點,且
,設
(
),沿
將梯形
翻折,使平面
平面
,如圖.
(1)當時,求證:
;
(2)若以、
、
、
為頂點的三棱錐的體積記為
,求
的最大值;
(3)當取得最大值時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險公司有一款保險產品的歷史收益率(收益率利潤
保費收入)的頻率分布直方圖如圖所示:
(1)試估計這款保險產品的收益率的平均值;
(2)設每份保單的保費在20元的基礎上每增加元,對應的銷量為
(萬份).從歷史銷售記錄中抽樣得到如下5組
與
的對應數據:
| 25 | 30 | 38 | 45 | 52 |
銷量為 | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
由上表,知與
有較強的線性相關關系,且據此計算出的回歸方程為
.
(。┣髤的值;
(ⅱ)若把回歸方程當作
與
的線性關系,用(1)中求出的收益率的平均值作為此產品的收益率,試問每份保單的保費定為多少元時此產品可獲得最大利潤,并求出最大利潤.注:保險產品的保費收入
每份保單的保費
銷量.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com