【題目】已知函數
(1)若,且
在
上單調遞增,求實數
的取值范圍
(2)是否存在實數,使得函數
在
上的最小值為
?若存在,求出實數
的值;若不存在,請說明理由.
【答案】(1);(2)實數
是存在的,且
.
【解析】
試題分析:(1)原題等價于在
時恒成立,即
恒成立,分離參數得
,只需求得函數
在區間
值域即可;
(2)利用反證法假設存在這樣的實數,則
在
時恒成立,且可以取到等號,故
,即
,利用導函數求得函數
的最小值,最后令最小值等于1,可求出參數
的范圍.
試題解析:(1)
由已知在
時恒成立,即
恒成立
分離參數得,
因為
所以
所以正實數的取值范圍為:
(2)假設存在這樣的實數,則
在
時恒成立,且可以取到等號
故,即
從而這樣的實數必須為正實數,當
時,由上面的討論知
在
上遞增,
,此時不合題意,故這樣的
必須滿足
,此時:
令得
的增區間為
令得
的減區間為
故
整理得
即,設
,
則上式即為,構造
,則等價于
由于為增函數,
為減函數,故
為增函數
觀察知,故
等價于
,與之對應的
綜上符合條件的實數是存在的,且
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,橢圓
和拋物線
交于
兩點,且直線
恰好通過橢圓
的右焦點.
(1)求橢圓的標準方程;
(2)經過橢圓右焦點的直線
和橢圓
交于
兩點,點
在橢圓上,且
,
其中為坐標原點,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.
根據該折線圖,下列結論正確的是( )
A. 月接待游客逐月增加
B. 年接待游客量逐年減少
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客相對于7月至12月,波動性更大,變化比較明顯
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】重慶市某廠黨支部10月份開展“兩學一做”活動,將10名黨員技工平均分為甲,乙兩組進行技能比賽.要求在單位時間內每個技工加工零件若干,其中合格零件的個數如下表:
1號 | 2號 | 3號 | 4號 | 5號 | |
甲組 | 4 | 5 | 7 | 9 | 10 |
乙組 | 5 | 6 | 7 | 8 | 9 |
(1)分別求出甲,乙兩組技工在單位時間內完成合格零件的平均數及方差,并由此分析兩組技工的技術水平;
(2)質檢部門從該車間甲,乙兩組中各隨機抽取1名技工,對其加工的零件進行檢測,若兩人完成合格零件個數之和超過12件,則稱該車間“質量合格”,求該車間“質量合格”的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com