【題目】已知定義域為的函數
是奇函數.
(1)求的值;
(2)判斷函數的單調性(只寫出結論即可);
(3)若對任意的不等式
恒成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知點列An(an , bn)(n∈N*)均為函數y=ax(a>0,a≠1)的圖象上,點列Bn(n,0)滿足|AnBn|=|AnBn+1|,若數列{bn}中任意連續三項能構成三角形的三邊,則a的取值范圍為( )
A.(0, )∪(
,+∞)
B.( ,1)∪(1,
)
C.(0, )∪(
,+∞)
D.( ,1)∪(1,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},則A∩B=( )
A.{1,3}
B.{5,6}
C.{4,5,6}
D.{4,5,6,7}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,數列{bn} 的前n項和為Tn , 若Tn≥tn2對n∈N*恒成立,則實數t的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以平面直角坐標系的原點為極點, 軸正半軸為極軸建立極坐標系,已知圓
的極坐標方程為
,直線
的參數方程為
(
為參數),若
與
交于
兩點.
(Ⅰ)求圓的直角坐標方程;
(Ⅱ)設,求
的值.
【答案】(1);(2)1.
【解析】試題分析:(1)先根據 將圓
的極坐標方程化為直角坐標方程;(2)先將直線參數方程調整化簡
,再將直線參數方程代入圓直角坐標方程,根據參數幾何意義得
,最后利用韋達定理求解
試題解析:(Ⅰ)由,得
,
(Ⅱ)把,
代入上式得,
∴,則
,
,
.
【題型】解答題
【結束】
23
【題目】證明:(Ⅰ)已知是正實數,且
.求證:
;
(Ⅱ)已知,且
,
,
.求證:
中至少有一個是負數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的離心率
,過點A(0,﹣b)和B(a,0)的直線與原點的距離為
.
(1)求橢圓的方程;
(2)已知定點E(﹣1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點,問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com