【題目】隨著互聯網的興起,越來越多的人選擇網上購物.某購物平臺為了吸引顧客,提升銷售額,每年雙十一都會進行某種商品的促銷活動.該商品促銷活動規則如下:①“價由客定”,即所有參與該商品促銷活動的人進行網絡報價,每個人并不知曉其他人的報價,也不知道參與該商品促銷活動的總人數;②報價時間截止后,系統根據當年雙十一該商品數量配額,按照參與該商品促銷活動人員的報價從高到低分配名額;③每人限購一件,且參與人員分配到名額時必須購買.某位顧客擬參加2019雙十一該商品促銷活動,他為了預測該商品最低成交價,根據該購物平臺的公告,統計了最近5年雙十一參與該商品促銷活動的人數(見下表)
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份編號t | 1 | 2 | 3 | 4 | 5 |
參與人數(百萬人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集數據的散點圖發現,可用線性回歸模型模擬擬合參與人數(百萬人)與年份編號
之間的相關關系.請用最小二乘法求
關于
的線性回歸方程:
,并預測2019年雙十一參與該商品促銷活動的人數;
(2)該購物平臺調研部門對2000位擬參與2019年雙十一該商品促銷活動人員的報價價格進行了一個抽樣調查,得到如下的一份頻數表:
報價區間(千元) |
| |||||
頻數 | 200 | 600 | 600 | 300 | 200 | 100 |
①求這2000為參與人員報價的平均值
和樣本方差
(同一區間的報價可用該價格區間的中點值代替);
②假設所有參與該商品促銷活動人員的報價可視為服從正態分布
,且
與
可分別由①中所求的樣本平均值
和樣本方差
估值.若預計2019年雙十一該商品最終銷售量為317400,請你合理預測(需說明理由)該商品的最低成交價.
參考公式即數據(i)回歸方程:,其中
,
(ii)
(iii)若隨機變量服從正態分布
,則
,
,
科目:高中數學 來源: 題型:
【題目】如圖,拋物線關于軸對稱,它的頂點在坐標原點,點
、
、
均在拋物線上.
(1)寫出該拋物線的方程及其準線方程;
(2)當與
的斜率存在且傾斜角互補時,求
的值及直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的焦點是橢圓
:
(
)的頂點,且橢圓與雙曲線的離心率互為倒數.
(Ⅰ)求橢圓的方程;
(Ⅱ)設動點,
在橢圓
上,且
,記直線
在
軸上的截距為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的方程為
,雙曲線
的左、右焦點分別為
的左、右頂點,而
的左、右頂點分別是
的左、右焦點.
(1)求雙曲線的方程;
(2)若直線與雙曲線
恒有兩個不同的交點A和B,且
(其中
為原點),求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了迎接2019年全國文明城市評比,某市文明辦對市民進行了一次文明創建知識的網絡問卷調查.每一位市民有且僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的1000人的得分(滿分:100分)數據,統計結果如下表所示:
組別 | |||||||
頻數 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數分布表可以認為,此次問卷調查的得分服從正態分布
,
近似為這1000人得分的平均值(同一組數據用該組區間的中點值作為代表),請利用正態分布的知識求
;
(2)在(1)的條件下,文明辦為此次參加問卷調查的市民制定如下獎勵方案:
(i)得分不低于的可以獲贈2次隨機話費,得分低于
的可以獲贈1次隨機話費;
(ii)每次獲贈的隨機話費和對應的概率為:
獲贈的隨機話費(單位:元) | 20 | 40 |
概率 |
現市民小王要參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求
的分布列及數學期望.
附:①;
②若,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
的焦點為
,準線為
,
與
軸的交點為
,點
在拋物線
上,過點
作
于點
,如圖1.已知
,且四邊形
的面積為
.
(1)求拋物線的方程;
(2)若正方形的三個頂點
,
,
都在拋物線
上(如圖2),求正方形
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓方程為,其右焦點
與拋物線
的焦點重合,過
且垂直于拋物線對稱軸的直線與橢圓交于
、
兩點,與拋物線交于
、
兩點.
(1)求橢圓的方程;
(2)若直線l與(1)中橢圓相交于,
兩點, 直線
,
,
的斜率分別為
,
,
(其中
),且
,
,
成等比數列;設
的面積為
, 以
、
為直徑的圓的面積分別為
,
, 求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com