【題目】函數f(x)=(x2﹣3)ex , 當m在R上變化時,設關于x的方程f2(x)﹣mf(x)﹣ =0的不同實數解的個數為n,則n的所有可能的值為( )
A.3
B.1或3
C.3或5
D.1或3或5
【答案】A
【解析】解:函數f(x)=(x2﹣3)ex的導數為f′(x)=(x+3)(x﹣1)ex , 當x>1或x<﹣3時,f′(x)>0,f(x)遞增;
當﹣3<x<1時,f′(x)<0,f(x)遞減.
即有f(x)在x=1處取得極小值﹣2e;在x=﹣3處取得極大值6e﹣3 ,
作出f(x)的圖象,如圖所示;
關于x的方程f2(x)﹣mf(x)﹣ =0,
由判別式為m2+ >0,方程有兩個不等實根,
令t=f(x),則t2﹣mt﹣ =0,t1t2=﹣
<0,
則原方程有一正一負實根.
當t>6e﹣3 , y=t和y=f(x)有一個交點,
當0<t<6e﹣3 , y=t和y=f(x)有三個交點,
當﹣2e<t<0時,y=t和y=f(x)有兩個交點,
當t<﹣2e時,y=t和y=f(x)沒有交點,
則x的方程f2(x)﹣mf(x)﹣ =0的實根個數為3.
故選:A.
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱長為a,E是棱DD1的中點
(1)求三棱錐E﹣A1B1B的體積;
(2)在棱C1D1上是否存在一點F,使B1F∥平面A1BE?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地有10個著名景點,其中8 個為日游景點,2個為夜游景點.某旅行團要從這10個景點中選5個作為二日游的旅游地.行程安排為第一天上午、下午、晚上各一個景點,第二天上午、下午各一個景點.
(1)甲、乙兩個日游景點至少選1個的不同排法有多少種?
(2)甲、乙兩日游景點在同一天游玩的不同排法有多少種?
(3)甲、乙兩日游景點不同時被選,共有多少種不同排法?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖2,四邊形為矩形,
⊥平面
,
,作如圖3折疊,折痕
,其中點
分別在線段
上,沿
折疊后點
疊在線段
上的點記為
,并且
⊥
.(1)證明:
⊥平面
;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經濟學中,函數f(x)的邊際函數M(x)定義為M(x)=f(x+1)﹣f(x),利潤函數p(x)邊際利潤函數定義為M1(x)=p(x+1)﹣p(x),某公司最多生產 100 臺報系統裝置,生產x臺的收入函數為R(x)=3000x﹣20x2(單位:元),其成本函數為C(x)=500x+4000x(單位:元),利潤是收入與成本之差.
(1)求利潤函數p(x)及邊際利潤函數M1(x);
(2)利潤函數p(x)與邊際利潤函數M1(x)是否具有相等的最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,且過點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點任作一條直線與橢圓
相交于
,
兩點,試問在
軸上是否存在定點
,使得直線
與直線
關于
軸對稱?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com