【題目】若f(x)是定義在R上的增函數,下列函數中
①y=[f(x)]2是增函數;
②y= 是減函數;
③y=﹣f(x)是減函數;
④y=|f(x)|是增函數;
其中正確的結論是( )
A.③
B.②③
C.②④
D.①③
【答案】A
【解析】解:對于①,當f(x)=x時,y=f(x)是定義在R上的增函數,但y=[f(x)]2=x2不是R上的增函數,故①錯誤;
對于②,當f(x)=x時,y=f(x)是定義在R上的增函數,但y= 不是定義域內的減函數,故②錯誤;
對于③y=f(x)是定義在R上的增函數,即若x1 , x2∈R,當x1<x2時,f(x1)<f(x2),而﹣f(x1)>﹣f(x2),則y=﹣f(x)是減函數,故③正確;
對于④,當f(x)=x時,y=f(x)是定義在R上的增函數,但y=|f(x)|=|x|在(﹣∞,0)上是減函數,在(0,+∞)上是增函數,故④錯誤.
∴正確的命題是③.
故選:A.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范圍;
(2)當x∈[0,+∞)時,求函數y=g(x)﹣f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在等差數列{an}中,a2+a7=﹣23,a3+a8=﹣29.
(1)求數列{an}的通項公式;
(2)設數列{an+bn}是首項為1,公比為c的等比數列,求{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中,正確的是
·(1)任取x>0,均有3x>2x;
·(2)當a>0,且a≠1時,有a3>a2;
·(3)y=( )﹣x是減函數;
·(4)函數f(x)在x>0時是增函數,x<0也是增函數,所以f(x)是增函數;
·(5)若函數f(x)=ax2+bx+2與x軸沒有交點,則b2﹣8a<0且a>0;
·(6)y=x2﹣2|x|﹣3的遞增區間為[1,+∞).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】解答
(1)設復數z滿足|z|=1,且(3+4i)z為純虛數,求 ;
(2)已知(2 ﹣
)n的展開式中所有二項式系數之和為64,求展開式的常數項.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若二次函數f(x)=ax2+bx+c(a,b,c∈R)滿足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)若在區間[﹣1,1]上,不等式f(x)>6x+m恒成立,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com