【題目】如圖,在正四棱臺中,上底面邊長為4,下底面邊長為8,高為5,點
分別在
上,且
.過點
的平面
與此四棱臺的下底面會相交,則平面
與四棱臺的面的交線所圍成圖形的面積的最大值為
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)是定義在[0,2]上的增函數,且圖像是連續不斷的曲線,若f(0)=M,f(2)=N(M>0,N>0),那么下列四個命題中是真命題的有( )
A.必存在x∈[0,2],使得f(x)B.必存在x∈[0,2],使得f(x)
C.必存在x∈[0,2],使得f(x)D.必存在x∈[0,2],使得f(x)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設分別是正方體
的棱
上兩點,且
,給出下列四個命題:①三棱錐
的體積為定值;②異面直線
與
所成的角為
;③
平面
;④直線
與平面
所成的角為
.其中正確的命題為( )
A. ①② B. ②③ C. ①②④ D. ①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
經過點
,離心率為
.
(1)求的方程;
(2)過的左焦點
且斜率不為
的直線
與
相交于
,
兩點,線段
的中點為
,直線
與直線
相交于點
,若
為等腰直角三角形,求
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,斜率為
的直線
交拋物線
于
,
兩點,當直線
過點
時,以
為直徑的圓與直線
相切.
(1)求拋物線的方程;
(2)與平行的直線
交拋物線于
,
兩點,若平行線
,
之間的距離為
,且
的面積是
面積的
倍,求
和
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為調查中國及美國的高中生在“家”、“朋友聚集的地方”、“個人空間”這三個場所中感到最幸福的場所是哪個,從中國某城市的高中生中隨機抽取了55人,從美國某城市高中生中隨機抽取了45人進行答題。中國高中生的答題情況:選擇“家”的高中生的人數占,選擇“朋友聚集的地方”的高中生的人數占
,選擇“個人空間”的高中生的人數占
,美國高中生的答題情況:選擇“家”的高中生的人數占
,選擇“朋友聚集的地方”的高中生的人數占
,選擇“個人空間”的高中生的人數占
。
(1)請根據以上調查結果將下面的2X2列聯表補充完整,并判斷能否有95%的把握認為戀家(在家里感到最幸福)與國別有關;
在家里感到最幸福 | 在其他場所感到最幸福 | 總計 | |
中國高中生 | |||
美國高中生 | |||
總計 |
(2)從被調查的不“戀家”的美國高中生中,用分層抽樣的方法隨機選出4人接受進一步調查,再從4人中隨機選出2人到中國交流學習,求2人中含有在“個人空間”感到最幸福的高中生的概率。
| 0.050 | 0.025 | 0.010 | 0.001 |
3.841 | 5.024 | 6.635 | 10.8 |
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】空中有一氣球,在它的正西方A點測得它的仰角為45°,同時在它南偏東60°的B點,測得它的仰角為30°,已知A、B兩點間的距離為107米,這兩個觀測點均離地1米,則測量時氣球離地的距離是_____米.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),在以坐標原點
為極點,以
軸正半軸為極軸的極坐標中,圓
的方程為
.
(1)寫出直線的普通方程和圓
的直角坐標方程;
(2)若點的坐標為
,圓
與直線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ( x R ,且 e 為自然對數的底數).
⑴ 判斷函數 f x 的單調性與奇偶性;
⑵是否存在實數 t ,使不等式對一切的 x R 都成立?若存在,求出 t 的值,若 不存在說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com