【題目】某貨輪勻速行駛在相距海里的甲、乙兩地間運輸貨物,運輸成本由燃料費用和其他費用組成.已知該貨輪每小時的燃料費用與其航行速度的平方成正比(比例系數為
),其他費用為每小時
元,且該貨輪的最大航行速度為
海里/小時.
(1)請將從甲地到乙地的運輸成本(元)表示為航行速度
(海里/小時)的函數;
(2)要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?
科目:高中數學 來源: 題型:
【題目】如圖,某城市有一塊半徑為40的半圓形(以
為圓心,
為直徑)綠化區域,現計劃對其進行改建,在
的延長線上取點
,使
,在半圓上選定一點
,改建后的綠化區域由扇形區域
和三角形區域
組成,其面積為
,設
.
(1)寫出關于
的函數關系式
,并指出
的取值范圍;
(2)試問多大時,改建后的綠化區域面積
最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某小區隨機抽取40個家庭,收集了這40個家庭去年的月均用水量(單位:噸)的數據,整理得到頻數分布表和頻率分布直方圖.
(1)求頻率分布直方圖中的值;
(2)從該小區隨機選取一個家庭,試估計這個家庭去年的月均用水量不低于6噸的概率;
(3)在這40個家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個容量為7的樣本,將該樣本看成一個總體,從中任意選取2個家庭,求其中恰有一個家庭的月均用水量不低于8噸的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(I)證明:平面PQC⊥平面DCQ
(II)求二面角Q-BP-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,,過橢圓
的右頂點和上頂點的直線
與圓
相切.
(1)求橢圓的方程;
(2)設是橢圓
的上頂點, 過點
分別作直線
交橢圓
于
兩點, 設這兩條直線的斜率分別為
,且
,證明: 直線
過定點
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知以點為圓心的圓過原點O,與x軸另一個交點為M,與y軸另一個交點為N,
(1)求證:△MON的面積為定值;
(2)直線4x+ y-4=0與圓C交于點A、B,若,求圓C的方程
(3)若直線l:x+ y -5=0和圓C交于點A,B兩點,且AB=,求圓心C的坐標。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com