【題目】如圖,已知直角梯形所在的平面垂直于平面
,
.
(1)在直線上是否存在一點
,使得
平面
?請證明你的結論.
(2)求平面與平面
所成的銳二面角
的余弦值.
【答案】(1) 點為線段
的中點就是滿足條件,證明見解析;(2)
.
【解析】
試題分析:(1)線段的中點就是滿足條件的點
.證明如下:取
的中點
連接
.取
的中點
,連接
.由
且
是正三角形
四邊形
為矩形
,又
且
,即四邊形
是平行四邊形
平面
; (2)做輔助線,由
是平面
與平面
所成二面角的棱.又平面
,
平面
平面
是所求二面角的平面角,再設
.
試題解析: (1)線段的中點就是滿足條件的點
.
證明如下:
取的中點
連接
,則
.
取的中點
,連接
.
且
,
是正三角形,
,
四邊形
為矩形.
又
,
且
,即四邊形
是平行四邊形.
.
而平面
,
平面
.
(2)過點作
的平行線
,過點
作
的垂線交于點
,連接
.
,
.
是平面
與平面
所成二面角的棱.
平面
,
,
平面
.
又平面
,
.
平面
,
.
是所求二面角的平面角.
設,則
.
.
.
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量
(單位:
)和年利潤
(單位:千元)的影響,對近8年的年宣傳費
和年銷售量
數據作了初步處理,得到下面的散點圖及一些統計量的值.
(1)根據散點圖判斷, 與
哪一個適宜作為年銷售量
關于年宣傳費
的回歸方程類型?(給出判斷即可,不必說出理由);
(2)根據(1)的判斷結果及表中數據,建立關于
的回歸方程;
(3)已知這種產品的年利潤與
的關系為
,根據(2)的結果求:年宣傳費
為何值時,年利潤最大?
附:對于一組數據,
,…
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一(1)班的一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖.
(1)求分數在的頻率及全班人數;
(2)求分數在之間的頻數,并計算頻率分布直方圖中
間矩形的高;
(3)若要從分數在之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,至少有一份分數在
之間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方體ABCD-A1B1C1D中,M為DD1的中點,O為AC的中點,AB=2.
(I)求證:BD1∥平面ACM;
(Ⅱ)求證:B1O⊥平面ACM;
(Ⅲ)求三棱錐O-AB1M的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,且曲線
的左焦點
在直線
上.
(1)若直線與曲線
交于
兩點,求
的值;
(2)求曲線的內接矩形的周長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖(b)所示.
(1)求證:BC⊥平面ACD;
(2)求幾何體D-ABC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某貨輪勻速行駛在相距海里的甲、乙兩地間運輸貨物,運輸成本由燃料費用和其他費用組成.已知該貨輪每小時的燃料費用與其航行速度的平方成正比(比例系數為
),其他費用為每小時
元,且該貨輪的最大航行速度為
海里/小時.
(1)請將從甲地到乙地的運輸成本(元)表示為航行速度
(海里/小時)的函數;
(2)要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com