精英家教網 > 高中數學 > 題目詳情

【題目】已知三棱柱ABC﹣A1B1C1的側棱與底面邊長都相等,A1在底面ABC內的射影為△ABC的中心,則AB1與底面ABC所成角的正弦值等于

【答案】
【解析】解:由題意不妨令棱長為2,如圖,A1在底面ABC內的射影為△ABC的中心,故DA= ,
由勾股定理得A1D= =
過B1作B1E⊥平面ABC,則∠B1AE為AB1與底面ABC所成角,且B1E=
如圖作A1S⊥AB于中點S,∴A1S= ,
∴AB1= =2
∴AB1與底面ABC所成角的正弦值sin∠B1AE= =
所以答案是:

【考點精析】關于本題考查的空間角的異面直線所成的角,需要了解已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知二次函數y=f(x)滿足f(0)=3,且f(x+1)﹣f(x)=2x﹣1.
(1)求f(x)的解析式;
(2)求函數在區間[﹣2,t](t>﹣2)上的最大值g(t);
(3)是否存在實數m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[2m,2n],如果存在,求出m,n的值,如不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】圓C過點M(5,2),N(3,2)且圓心在x軸上,點A為圓C上的點,O為坐標原點.
(1)求圓C的方程;
(2)連接OA,延長OA到P,使得|OA|=|AP|,求點P的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠生產某種產品的年固定成本為250萬元,每生產x千件,需另投入成本C(x),當年產量不足80千件時,C(x)= x2+10x(萬元);當年產量不小于80千件時C(x)=51x+ ﹣1450(萬元),通過市場分析,若每件售價為500元時,該廠本年內生產該商品能全部銷售完.
(1)寫出年利潤L(萬元)關于年產量x(千件)的函數解析式;
(2)年產量為多少千件時,該廠在這一商品的生產中所獲的利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°

(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C= ,求三棱柱ABC﹣A1B1C1的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若一系列函數的解析式相同,值域相同,但定義域不同,則稱這些函數為“孿生函數”,那么函數解析式為y=2x2+1,值域為{5,19}的“孿生函數”共有( )
A.4個
B.6個
C.8個
D.9個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合A={x|x2﹣2ax+a=0,x∈R},B={x|x2﹣4x+a+5=0,x∈R},若A和B中有且僅有一個是,則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合D= ,有下面四個命題:
p1(x,y)∈D, ≥3 p2(x,y)∈D, <1
p3(x,y)∈D, <4 p4(x,y)∈D, ≥2
其中的真命題是(
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某日,甲乙二人隨機選擇早上6:00﹣7:00的某一時刻到達黔靈山公園早鍛煉,則甲比乙提前到達超過20分鐘的概率為( 。
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视