【題目】如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點.
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.
【答案】(1)見解析(2)
【解析】
(1)由AB是圓的直徑,得AC⊥BC,
由PA⊥平面ABC,BC平面ABC,得PA⊥BC.
又PA∩AC=A,PA平面PAC,AC平面PAC,
所以BC⊥平面PAC.
因為BC平面PBC,
所以平面PBC⊥平面PAC.
(2)過C作CM∥AP,則CM⊥平面ABC.
如圖,以點C為坐標原點,分別以直線CB、CA、CM為x軸,y軸,z軸建立空間直角坐標系.
在Rt△ABC中,因為AB=2,AC=1,所以BC=.
因為PA=1,所以A(0,1,0),B(,0,0),P(0,1,1).故
=(
,0,0),
=(0,1,1).
設平面BCP的法向量為n1=(x1,y1,z1),則所以
不妨令y1=1,則n1=(0,1,-1).因為=(0,0,1),
=(
,-1,0),
設平面ABP的法向量為n2=(x2,y2,z2),則所以
不妨令x2=1,則n2=(1,,0).于是cos〈n1,n2〉=
=
.
由題圖可判斷二面角為銳角,所以二面角C-PB-A的余弦值為.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,直線的極坐標方程為
,現以極點
為原點,極軸為
軸的非負半軸建立平面直角坐標系,曲線
的參數方程為
(
為參數).
(1)求直線的直角坐標方程和曲線
的普通方程;
(2)若曲線為曲線
關于直線
的對稱曲線,點
,
分別為曲線
、曲線
上的動點,點
坐標為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設、
、
表示不同的直線,
、
、
表示不同的平面,給出下列
個命題:其中命題正確的個數是( )
①若,且
,則
;
②若,且
,則
;
③若,
,
,則
;
④ 若,
,
,且
,則
.
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
的參數方程為:
(
為參數),在以
為極點,
軸正半軸為極軸的極坐標系中,曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)若曲線與
交于
,
兩點,點
的坐標為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市政府為了節約生活用電,計劃在本市試行居民生活用電定額管理,即確定一戶居民月用電量標準a,用電量不超過a的部分按平價收費,超出a的部分按議價收費為此,政府調查了100戶居民的月平均用電量
單位:度
,以
,
,
,
,
,
分組的頻率分布直方圖如圖所示.
根據頻率分布直方圖的數據,求直方圖中x的值并估計該市每戶居民月平均用電量
的值;
用頻率估計概率,利用
的結果,假設該市每戶居民月平均用電量X服從正態分布
估計該市居民月平均用電量介于
度之間的概率;
利用
的結論,從該市所有居民中隨機抽取3戶,記月平均用電量介于
度之間的戶數為
,求
的分布列及數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為矩形,平面
平面
,
,
,
為
的中點..
(1)求證:平面平面
;
(2),在線段
上是否存在一點
,使得二面角
的余弦值為
.請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
.
(1)當時,求函數
在
處的切線方程;
(2)若函數存在兩個極值點
,求
的取值范圍;
(3)若不等式對任意的實數
恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com