【題目】如圖ABC﹣A1B1C1是直三棱柱,底面△ABC是等腰直角三角形,且AB=AC=4,直三棱柱的高等于4,線段B1C1的中點為D,線段BC的中點為E,線段CC1的中點為F.
(1)求異面直線AD、EF所成角的大;
(2)求三棱錐D﹣AEF的體積.
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦點在圓
上,且橢圓上一點與兩焦點圍成的三角形周長為
.
(1)求橢圓的方程;
(2)過圓上一點作圓的切線
交橢圓于
兩點,證明:點
在以
為直徑的圓內.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題:①任意兩條直線都可以確定一個平面;②若兩個平面有3個不同的公共點,則這兩個平面重合;③直線a,b,c,若a與b共面,b與c共面,則a與c共面;④若直線l上有一點在平面α外,則l在平面α外.其中錯誤命題的個數是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,正方體ABCD﹣A′B′C′D′的棱長為1,E,F分別是棱AA′,CC′的中點,過直線E,F的平面分別與棱BB′、DD′交于M,N,設BM=x,x∈[0,1],給出以下四個命題:
①平面MENF⊥平面BDD′B′;
②當且僅當x=時,四邊形MENF的面積最;
③四邊形MENF周長L=f(x),x∈[0,1]是單調函數;
④四棱錐C′﹣MENF的體積V=h(x)為常函數;
以上命題中假命題的序號為( 。
A. ①④B. ②C. ③D. ③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線,直線l的參數方程為:
(t為參數),直線l與曲線C分別交于
兩點.
(1)寫出曲線C和直線l的普通方程;
(2)若點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學習小組在生物研究性學習中,對春季晝夜溫差大小與黃豆種子發芽多少之間的關系進行研究,于是小組成員在3月份的31天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發芽數,得到如下資料:
日期 | 3月2日 | 3月8日 | 3月15日 | 3月22日 | 3月28日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 14 |
(1)在這個學習小組中負責統計數據的那位同學為了減少計算量,他從這5天中去掉了3月2日與3月28日的兩組數據,請根據這5天中的另三天的數據,求出關于
的線性回歸方程
;
(2)若由線性回歸方程得到的估計數據與所去掉的試驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,
)(參考數據:
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某調查機構對全國互聯網行業進行調查統計,得到整個互聯網行業從業者年齡分布餅狀圖和90后從事互聯網行業者崗位分布圖(90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生),則下列結論中不一定正確的是( )
整個互聯網行業從業者年齡分布餅狀圖 90后從事互聯網行業者崗位分布圖
A.互聯網行業從業人員中90后占一半以上
B.互聯網行業中從事技術崗位的人數90后比80后多
C.互聯網行業中從事設計崗位的人數90后比80前多
D.互聯網行業中從事市場崗位的90后人數不足總人數的10%
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于具有相同定義域D的函數和
,若存在函數
(k,b為常數),對任給的正數m,存在相應的
,使得當
且
時,總有
,則稱直線
為曲線
和
的“分漸近線”.給出定義域均為
的四組函數如下:
①,
;
②,
;
③,
;
④,
其中,曲線和
存在“分漸近線”的是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知位數滿足下列條件:①各個數字只能從集合
中選;②若其中有數字
,則在
的前面不含
,將這樣的
位數的個數記為
;
(1)求、
;
(2)探究與
之間的關系,求出數列
的通項公式;
(3)對于每個正整數,在
與
之間插入
個
得到一個新數列
,設
是數列
的前
項和,試探究
能否成立,寫出你探究得到的結論并給出證明;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com