【題目】設函數f(x)的定義域為D,如果x∈D,y∈D,使得f(x)=﹣f(y)成立,則稱函數f(x)為“Ω函數”.給出下列四個函數:
①y=sinx;
②y=2x;
③y= ;
④f(x)=lnx,
則其中“Ω函數”共有( )
A.1個
B.2個
C.3個
D.4個
【答案】C
【解析】解:若x∈D,y∈D,使得f(x)=﹣f(y)成立,
即等價為x∈D,y∈D,使得f(x)+f(y)=0成立.
A.函數的定義域為R,∵y=sinx是奇函數,
∴f(﹣x)=﹣f(x),即f(x)+f(﹣x)=0,∴當y=﹣x時,等式(x)+f(y)=0成立,∴A為“Ω函數”.
B.∵f(x)=2x>0,∴2x+2y>0,則等式(x)+f(y)=0不成立,∴B不是“Ω函數”.
C.函數的定義域為{x|x≠1},由(x)+f(y)=0得 ,即
,
∴x+y﹣2=0,即y=2﹣x,當x≠1時,y≠1,∴當y=2﹣x時,等式(x)+f(y)=0成立,∴C為“Ω函數”.
D.函數的定義域為(0,+∞),由(x)+f(y)=0得lnx+lny=ln(xy)=0,即xy=1,即當y= 時,等式(x)+f(y)=0成立,∴D為“Ω函數”.
綜上滿足條件的函數是A,C,D,共3個,
故選:C
【考點精析】利用函數的值對題目進行判斷即可得到答案,需要熟知函數值的求法:①配方法(二次或四次);②“判別式法”;③反函數法;④換元法;⑤不等式法;⑥函數的單調性法.
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費 (單位:千元)對年銷售量
(單位:t)和年利潤
(單位:千元)的影響.對近8年的年宣傳費
和年銷售量
(i=1,2,…,8)數據作了初步處理,得到右面的散點圖及一些統計量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,
(1)根據散點圖判斷, 與
哪一個適宜作為年銷售量
關于年宣傳費
的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(1)的判斷結果及表中數據,建立關于
的回歸方程;
(3)已知這種產品的年利潤與
的關系為
.根據(2)的結果回答下列問題:
①年宣傳費=49時,年銷售量及年利潤的預報值是多少?
②年宣傳費為何值時,年利潤的預報值最大?
附:對于一組數據,
…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知長方體ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的點,且BE⊥B1C.
(1)求CE的長;
(2)求證:A1C⊥平面BED;
(3)求A1B與平面BDE夾角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐E﹣ABCD中,底面ABCD為矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F為CE的中點,求證:
(1)AE∥平面BDF;
(2)平面BDF⊥平面ACE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】衡陽市為增強市民的環境保護意識,面向全市征召義務宣傳志愿者,現從符合條件的志愿者中隨機抽取100名后按年齡分組:第1組,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場的宣傳活動,則應從第3,4,5組各抽取多少名志愿者?
(2)在(1)的條件下,該市決定在第3,4組的志愿者中隨機抽取2名志愿者介紹宣傳經驗,求第4組至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知y= x3+bx2+(b+2)x+3是R上的單調增函數,則b的取值是( )
A.b<﹣1或b>2
B.b≤﹣2或b≥2
C.﹣1<b<2
D.﹣1≤b≤2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com