精英家教網 > 高中數學 > 題目詳情

【題目】設函數,

)當時,求曲線在點處的切線方程.

)求函數單調區間和極值點.

【答案】(1);(2)當時,的單調增區間為,無極值,當時,的單調增區間是,單調減區間為,極大值為,極小值為

【解析】試題分析:(1)時,,,求出的值可得切點坐標,求出的值,可得切線斜率,利用點斜式可得曲線在點處的切線方程;(2)求出,分兩種情況討論的范圍,在定義域內,分別令求得的范圍,可得函數增區間,求得的范圍,可得函數的減區間,結合函數的單調性,可得函數的極值點.

試題解析:()當時,,,∴曲線在點處的切線方程為,即

)由,

時,上是單調遞增,無極值,

時,令,令,得,上單調遞增,在上單調遞減,∴時取得極大值,, 時取得極小值,,綜上所述,當時,的單調增區間為,無極值,當時,的單調增區間是,單調減區間為,極大值為,極小值為

【方法點晴】本題主要考查利用導數求曲線切線方程以及利用導數研究函數的單調性與極值,屬于難題.求曲線切線方程的一般步驟是:(1)求出處的導數,即在點 出的切線斜率(當曲線處的切線與軸平行時,在 處導數不存在,切線方程為);(2)由點斜式求得切線方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數kR),且滿足f(﹣1)=f(1).

(1)求k的值;

(2)若函數y=fx)的圖象與直線沒有交點,求a的取值范圍;

(3)若函數,x[0,log23],是否存在實數m使得hx)最小值為0,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直線l經過兩直線l1:2x-y+4=0與l2:x-y+5=0的交點,且與直線x-2y-6=0垂直.

(1)求直線l的方程.

(2)若點P(a,1)到直線l的距離為,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)、g(x)、h(x)是定義域為R的三個函數,對于命題:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均為增函數,則f(x)、g(x)、h(x)中至少有一個增函數;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數,則f(x)、g(x)、h(x)均是以T為周期的函數,下列判斷正確的是( 。
A.①和②均為真命題
B.①和②均為假命題
C.①為真命題,②為假命題
D.①為假命題,②為真命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=loga(a>0且a≠1).

(1)求f(x)的定義域;

(2)當0<a<1時,判斷f(x)在(2,+∞)的單惆性;

(3)是否存在實數a,使得當f(x)的定義域為[m,n]時,值域為[1+logan,1+1ogam],若存在,求出實數a的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】雙曲線x2 =1(b>0)的左、右焦點分別為F1 , F2 , 直線l過F2且與雙曲線交于A,B兩點.
(1)直線l的傾斜角為 ,△F1AB是等邊三角形,求雙曲線的漸近線方程;
(2)設b= ,若l的斜率存在,且( =0,求l的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】用數字1,2,3,4,5組成沒有重復數字的五位數,其中奇數的個數為( 。
A.24
B.48
C.60
D.72

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設直線l1 , l2分別是函數f(x)= 圖象上點P1 , P2處的切線,l1與l2垂直相交于點P,且l1 , l2分別與y軸相交于點A,B,則△PAB的面積的取值范圍是(  )
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)=x2+ax+b,實數x1,x2滿足x1∈(a-1,a),x2∈(a+1,a+2).

(Ⅰ)若a-,求證:fx1)>fx2);

(Ⅱ)若fx1)=fx2)=0,求b-2a的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视