【題目】已知函數f(x)=x2+ax+b,實數x1,x2滿足x1∈(a-1,a),x2∈(a+1,a+2).
(Ⅰ)若a<-,求證:f(x1)>f(x2);
(Ⅱ)若f(x1)=f(x2)=0,求b-2a的取值范圍.
【答案】(Ⅰ)詳見解析(Ⅱ)-<b-2a<
【解析】
(Ⅰ)由條件,根據作差法,分解因式,由不等式的性質即可得證;
(Ⅱ)由條件f(x1)=f(x2)=0,x1∈(a-1,a),x2∈(a+1,a+2),結合二次函數的圖象可得f(a-1)>0.f(a)<0,f(a+1)<0,f(a+2)>0,化簡整理,結合b,b-2a的范圍,即可得到所求范圍.
(Ⅰ)證明:因為a<-,x1<x2,x1+x2<2a+2,
所以f(x2)-f(x1)=(x2-x1)(x1+x2+a)<(x2-x1)(3a+2)<0,
即f(x1)>f(x2);
(Ⅱ)因為f(x1)=f(x2)=0,x1∈(a-1,a),x2∈(a+1,a+2),
所以,
所以max{-2a2+3a-1,-2a2-6a-4}<b<min{-2a2,-2a2-3a-1}.
由max{-2a2+3a-1,-2a2-6a-4}<min{-2a2,-2a2-3a-1},
解得-<a<0.
由于max{-2a2+a-1,-2a2-8a-4}<b-2a<min{-2a2-2a,-2a2-5a-1},
而且max{-2a2+a-1,-2a2-8a-4}≥-,
min{-2a2-2a,-2a2-5a-1}≤,
所以-<b-2a<
.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數方程為(a>0,β為參數).以O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos
=
.
(1)若曲線C與l只有一個公共點,求a的值;
(2)A,B為曲線C上的兩點,且∠AOB=,求△OAB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)討論f(x)的單調性;
(2)確定a的所有可能取值,使得f(x)> ﹣e1﹣x在區間(1,+∞)內恒成立(e=2.718…為自然對數的底數).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的偶函數,且在區間[0,+∞)上單調遞增,若實數a滿足f(log2a)+f( a)≤2f(1),則a的取值范圍是( )
A.
B.[1,2]
C.
D.(0,2]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】實數a,b滿足ab>0且a≠b,由a、b、、
按一定順序構成的數列( 。
A. 可能是等差數列,也可能是等比數列
B. 可能是等差數列,但不可能是等比數列
C. 不可能是等差數列,但可能是等比數列
D. 不可能是等差數列,也不可能是等比數列
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x﹣ .
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中,正確的序號是_________.
① 的圖象與
的圖象關于
軸對稱;
② 若,則
的值為1;
③ 若, 則
;
④ 把函數的圖象向左平移
個單位長度后,所得圖象的一條對稱軸方程為
;
⑤ 在鈍角中,
,則
;
⑥ .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“輾轉相除法”的算法思路如右圖所示.記R(a\b)為a除以b所得的余數(a,b∈N*),執行程序框圖,若輸入a,b分別為243,45,則輸出b的值為( )
A.0
B.1
C.9
D.18
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com