【題目】已知函數f(x)=2x﹣ .
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數m的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知數列{an}的首項為1,Sn為數列{an}的前n項和,Sn+1=qSn+1,其中q>0,n∈N* .
(1)若2a2 , a3 , a2+2成等差數列,求an的通項公式;
(2)設雙曲線x2﹣ =1的離心率為en , 且e2=
,證明:e1+e2++en>
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+ax+b,實數x1,x2滿足x1∈(a-1,a),x2∈(a+1,a+2).
(Ⅰ)若a<-,求證:f(x1)>f(x2);
(Ⅱ)若f(x1)=f(x2)=0,求b-2a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x3+ax2﹣a2x+1,g(x)=ax2﹣2x+1,其中實數a≠0.
(1)若a>0,求函數f(x)的單調區間;
(2)當函數y=f(x)與y=g(x)的圖象只有一個公共點且g(x)存在最小值時,記g(x)的最小值為h(a),求h(a)的值域;
(3)若f(x)與g(x)在區間(a,a+2)內均為增函數,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax(a>0且a≠1)的圖象過的(-2,16).
(1)求函數f(x)的解析式;
(2)若f(2m+5)<f(3m+3),求m的取值范圍.
【答案】(1)f(x)=; (2)m<2.
【解析】
(1)將代入
可得
,從而可得函數
的解析式;(2)根據(1)中所求解析式判斷
是實數集上的減函數,不等式
等價于
,解不等式即可得結果.
(1)∵函數f(x)=ax(a>0且a≠1)的圖象過點(-2,16),
∴a-2=16
∴a=,即f(x)=
,
(2)∵f(x)=為減函數,f(2m+5)<f(3m+3),
∴2m+5>3m+3,
解得m<2.
【點睛】
本題主要考查了指數函數的解析式和指數函數單調性的應用,意在考查綜合應用所學知識解答問題的能力,屬于基礎題.
【題型】解答題
【結束】
19
【題目】2017年APEC會議于11月10日至11日在越南峴港舉行,某研究機構為了了解各年齡層對APEC會議的關注程度,隨機選取了100名年齡在[20,45]內的市民舉行了調查,并將結果繪制成如圖所示的頻率分布直方圖(分組區間分布為[20,25),[25.30),[30,35),[35,40),[40,45]).
(1)求選取的市民年齡在[30,35)內的人數;
(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人參與APEC會議的宣傳活動,求參與宣傳活動的市民中至少有一人的年齡在[35,40)內的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com