【題目】設函數f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)討論f(x)的單調性;
(2)確定a的所有可能取值,使得f(x)> ﹣e1﹣x在區間(1,+∞)內恒成立(e=2.718…為自然對數的底數).
【答案】
(1)
解:由題意,f′(x)=2ax﹣ =
,x>0,
①當a≤0時,2ax2﹣1≤0,f′(x)≤0,f(x)在(0,+∞)上單調遞減.
②當a>0時,f′(x)= ,當x∈(0,
)時,f′(x)<0,
當x∈( ,+∞)時,f′(x)>0,
故f(x)在(0, )上單調遞減,在(
,+∞)上單調遞增
(2)
解:原不等式等價于f(x)﹣ +e1﹣x>0在x∈(1.+∞)上恒成立,
一方面,令g(x)=f(x)﹣ +e1﹣x=ax2﹣lnx﹣
+e1﹣x﹣a,
只需g(x)在x∈(1.+∞)上恒大于0即可,
又∵g(1)=0,故g′(x)在x=1處必大于等于0.
令F(x)=g′(x)=2ax﹣ +
﹣e1﹣x,g′(1)≥0,可得a
.
另一方面,當a 時,F′(x)=2a+
≥1+
=
+e1﹣x,
∵x∈(1,+∞),故x3+x﹣2>0,又e1﹣x>0,故F′(x)在a 時恒大于0.
∴當a 時,F(x)在x∈(1,+∞)單調遞增.
∴F(x)>F(1)=2a﹣1≥0,故g(x)也在x∈(1,+∞)單調遞增.
∴g(x)>g(1)=0,即g(x)在x∈(1,+∞)上恒大于0.
綜上,a
【解析】(I)利用導數的運算法則得出f′(x),通過對a分類討論,利用一元二次方程與一元二次不等式的關系即可判斷出其單調性;
(2)令g(x)=f(x)﹣ +e1﹣x=ax2﹣lnx﹣
+e1﹣x﹣a,可得g(1)=0,從而g′(1)≥0,解得得a
, 又,當a
時,F′(x)=2a+
≥
+e1﹣x , 可得F′(x)在a
時恒大于0,即F(x)在x∈(1,+∞)單調遞增.由F(x)>F(1)=2a﹣1≥0,可得g(x)也在x∈(1,+∞)單調遞增,進而利用g(x)>g(1)=0,可得g(x)在x∈(1,+∞)上恒大于0,綜合可得a所有可能取值.
本題主要考查了利用導數研究函數的單調性,導數在最大值、最小值問題中的應用,考查了計算能力和轉化思想,熟練掌握利用導數研究函數的單調性、極值、分類討論的思想方法等是解題的關鍵.
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減.
科目:高中數學 來源: 題型:
【題目】設f(x)、g(x)、h(x)是定義域為R的三個函數,對于命題:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均為增函數,則f(x)、g(x)、h(x)中至少有一個增函數;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數,則f(x)、g(x)、h(x)均是以T為周期的函數,下列判斷正確的是( 。
A.①和②均為真命題
B.①和②均為假命題
C.①為真命題,②為假命題
D.①為假命題,②為真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線l1 , l2分別是函數f(x)= 圖象上點P1 , P2處的切線,l1與l2垂直相交于點P,且l1 , l2分別與y軸相交于點A,B,則△PAB的面積的取值范圍是( )
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,已知曲線C1:(α為參數),在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρcos
=-
,曲線C3:ρ=2sin θ.
(1)求曲線C1與C2的交點M的直角坐標;
(2)設點A,B分別為曲線C2,C3上的動點,求|AB|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的首項為1,Sn為數列{an}的前n項和,Sn+1=qSn+1,其中q>0,n∈N* .
(1)若2a2 , a3 , a2+2成等差數列,求an的通項公式;
(2)設雙曲線x2﹣ =1的離心率為en , 且e2=
,證明:e1+e2++en>
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+ax+b,實數x1,x2滿足x1∈(a-1,a),x2∈(a+1,a+2).
(Ⅰ)若a<-,求證:f(x1)>f(x2);
(Ⅱ)若f(x1)=f(x2)=0,求b-2a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x3+ax2﹣a2x+1,g(x)=ax2﹣2x+1,其中實數a≠0.
(1)若a>0,求函數f(x)的單調區間;
(2)當函數y=f(x)與y=g(x)的圖象只有一個公共點且g(x)存在最小值時,記g(x)的最小值為h(a),求h(a)的值域;
(3)若f(x)與g(x)在區間(a,a+2)內均為增函數,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為R的函數f(x)=是奇函數.
(1)求b的值,判斷并用定義法證明f(x)在R上的單調性;
(2)解不等式f(2x+1)+f(x)<0.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com