精英家教網 > 高中數學 > 題目詳情
雙曲線虛軸的一個端點為,兩個焦點為、,則雙曲線的離心率為____________.
 

試題分析:根據雙曲線對稱性可知∠OMF2=60°,∴tan∠OMF2=,即c=b,∴a=,∴e=
點評:此類問題巧妙利用了雙曲線的對稱性轉化為a,b,c的關系,屬基礎題
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知正三角形AOB的頂點A,B在拋物線上,O為坐標原點,則(     )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

拋物線的準線與軸交于點,點在拋物線對稱軸上,過可作直線交拋物線于點、,使得,則的取值范圍是      

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

與拋物線相切傾斜角為的直線軸和軸的交點分別是A和B,那么過A、B兩點的最小圓截拋物線的準線所得的弦長為
A.4                B.2            C.2            D. 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知拋物線C的焦點為F,準線與x軸交于M點,過M點斜率為k的直線l與拋物線C交于AB兩點,若,則的值      

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

,分別是橢圓E:+=1(0﹤b﹤1)的左、右焦點,過的直線與E相交于A、B兩點,且,成等差數列。
(Ⅰ)求;
(Ⅱ)若直線的斜率為1,求b的值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某同學用《幾何畫板》研究拋物線的性質:打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個點,度量點的坐標,如圖.

(Ⅰ)拖動點,發現當時,,試求拋物線的方程;
(Ⅱ)設拋物線的頂點為,焦點為,構造直線交拋物線于不同兩點、,構造直線、分別交準線于、兩點,構造直線、.經觀察得:沿著拋物線,無論怎樣拖動點,恒有.請你證明這一結論.
(Ⅲ)為進一步研究該拋物線的性質,某同學進行了下面的嘗試:在(Ⅱ)中,把“焦點”改變為其它“定點”,其余條件不變,發現“不再平行”.是否可以適當更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請寫出相應的正確命題;否則,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設橢圓的兩個焦點分別為,過作橢圓長軸的垂線交橢圓于點,
為等腰直角三角形,則橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題13分)在平面直角坐標系中,是拋物線的焦點,是拋物線上位于第一象限內的任意一點,過三點的圓的圓心為,點到拋物線的準線的距離為.
(Ⅰ)求拋物線的方程;
(Ⅱ)是否存在點,使得直線與拋物線相切于點?若存在,求出點的坐標;若不存在,說明理由;

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视