【題目】已知集合A={1,3,x},B={1,x2},設全集為U=A∪B,若B∪(UB)=A,求UB.
【答案】解:因為B∪(UB)=A,而B∪(UB)=U,所以集合A是全集; 由集合元素的互異性可知:x2≠1,解得x≠±1,因為B是A的子集,則x2=x或者x2=3;
綜上解得:x=0或者x=± ;
從而可知,B={1,3}或者B={1,0},則UB={ }或者UB={3} 或UB={﹣
},
綜上所述,當x=0時,UB={3},
當x= 時,UB={
},
當x=﹣ 時,UB={﹣
}
【解析】因為B∪(UB)=A,而B∪(UB)=U,所以集合A是全集,再根據集合元素的特征即可求出.
【考點精析】解答此題的關鍵在于理解交、并、補集的混合運算的相關知識,掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法.
科目:高中數學 來源: 題型:
【題目】若f(x)=x2﹣x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).
(1)求f(log2x)的最小值及對應的x值;
(2)x取何值時,f(log2x)>f(1)且log2[f(x)]<f(1)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,平面
平面
,四邊形
為菱形,點
是棱
上不同于
,
的點,平面
與棱
交于點
,
,
,
.
(Ⅰ)求證: ∥平面
;
(Ⅱ)求證: 平面
;
(Ⅲ)若二面角為
,求
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知偶函數f(x)的定義域為R,且在(﹣∞,0)上是增函數,則f(﹣ )與f(a2﹣a+1)的大小關系為( )
A.f(﹣ )<f(a2﹣a+1)
B.f(﹣ )>f(a2﹣a+1)??
C.f(﹣ )≤f(a2﹣a+1)
D.f(﹣ )≥f(a2﹣a+1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上函數f(x),且f(x)+f(﹣x)=0,當x<0時,f(x)=( )x﹣8×(
)x﹣1
(1)求f(x)的解析式;
(2)當x∈[1,3]時,求f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數,當x≥0時,f(x)=ax(a>1),
(1)求函數f(x)的解析式;
(2)若不等式f(x)≤4的解集為[﹣2,2],求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,DP⊥x軸,點M在DP的延長線上,且|DM|=2|DP|.當點P在圓x2+y2=1上運動時.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)過點T(0,t)作圓x2+y2=1的切線交曲線C于A,B兩點,求△AOB面積S的最大值和相應的點T的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com