【題目】已知偶函數f(x)的定義域為R,且在(﹣∞,0)上是增函數,則f(﹣ )與f(a2﹣a+1)的大小關系為( )
A.f(﹣ )<f(a2﹣a+1)
B.f(﹣ )>f(a2﹣a+1)??
C.f(﹣ )≤f(a2﹣a+1)
D.f(﹣ )≥f(a2﹣a+1)
科目:高中數學 來源: 題型:
【題目】如圖所示,連結棱長為2cm的正方體各面的中心得一個多面體容器,從頂點A處向該容器內注水,注滿為止.已知頂點B到水面的高度h以每秒1cm勻速上升,記該容器內水的體積V(cm3)與時間T(S)的函數關系是V(t),則函數V(t)的導函數y=V′(t)的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校游園活動有這樣一個游戲:甲箱子里裝有3個白球,2個黑球,乙箱子里裝有1個白球,2個黑球,這些球除了顏色外完全相同,每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎(每次游戲結束后將球放回原箱).
(1)求在1次游戲中:
①摸出3個白球的概率.
②獲獎的概率.
(2)求在3次游戲中獲獎次數X的分布列.(用數字作答)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年9月,第22屆魯臺經貿洽談會在濰坊魯臺會展中心舉行,在會展期間某展銷商銷售一種商品,根據市場調查,每件商品售價x(元)與銷量t(萬元)之間的函數關系如圖所示,又知供貨價格與銷量呈反比,比例系數為20.(注:每件產品利潤=售價﹣供貨價格)
(1)求售價15元時的銷量及此時的供貨價格;
(2)當銷售價格為多少時總利潤最大,并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某鋼管生產車間生產一批鋼管,質檢員從中抽出若干根對其直徑(單位:)進行測量,得出這批鋼管的直徑
服從正態分布
.
(Ⅰ)如果鋼管的直徑滿足
為合格品,求該批鋼管為合格品的概率(精確到0.01);
(Ⅱ)根據(Ⅰ)的結論,現要從40根該種鋼管中任意挑選3根,求次品數的分布列和數學期望.
(參考數據:若,則
;
;
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了得到函數 ,x∈R的圖象,只需把函數y=2sinx,x∈R的圖象上所有的點( )
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的
倍縱坐標不變)
B.向右平移 個單位長度,再把所得各點的橫坐標縮短到原來的
倍(縱坐標不變)
C.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)
D.向右平移 個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列,數學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數y=3sin(2x+ )的圖象向右平移
個單位長度,所得圖象對應的函數( )
A.在區間( ,
)上單調遞減
B.在區間( ,
)上單調遞增
C.在區間(﹣ ,
)上單調遞減
D.在區間(﹣ ,
)上單調遞增
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com