【題目】已知函數,在點
處的切線方程為
,求(1)實數
的值;(2)函數
的單調區間以及在區間
上的最值.
【答案】(1)(2)
【解析】試題分析:(1)由題已知點處的切線方程
,可獲得兩個條件;即:點
再函數的圖像上,令點處的導數為切線斜率?傻脙蓚方程,求出
的值
(2)由(1)已知函數的解析式,可運用導數求出函數的單調區間和最值。即:
為函數的增區間,反之為減區間。最值需求出極值與區間端點值比較而得。
試題解析:(1)因為在點處的切線方程為
,所以切線斜率是
,
且,求得
,即點
,
又函數,則
所以依題意得,解得
(2)由(1)知,所以
令,解得
,當
;當
所以函數的單調遞增區間是
,單調遞減區間是
又,所以當x變化時,f(x)和f′(x)變化情況如下表:
X | 0 | (0,2) | 2 | (2,3) | 3 |
f′(x) | - | 0 | + | 0 | |
f(x) | 4 | ↘ | 極小值 | ↗ | 1 |
所以當時,
,
科目:高中數學 來源: 題型:
【題目】下列命題正確的個數是( )
①命題“x0∈R,x+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函數f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量a與b的夾角是鈍角”的充要條件是“a·b<0”.
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
,圓
:
的圓心
在橢圓上,點
到橢圓
的右焦點的距離為
.
(1)求橢圓的標準方程;
(2)過點作互相垂直的兩條直線
,且
交橢圓
于
兩點,直線
交圓
于
,
兩點,且
為
的中點,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】張三同學從7歲起到13歲每年生日時對自己的身高測量后記錄如下表:
年齡 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高 | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高關于年齡
的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的線性回歸方程,分析張三同學7歲至13歲身高的變化情況,如17歲之前都符合這一變化,請預測張三同學15歲時的身高.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1) 證明:AE⊥平面PCD;
(2) 求PB和平面PAD所成的角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,側面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點,OD⊥PC.
(1)求證:OC⊥PD;
(2)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題:
①樣本方差反映的是所有樣本數據與樣本平均值的偏離程度;
②某只股票經歷了10個跌停(下跌10%)后需再經過10個漲停(上漲10%)就可以回到原來的凈值;
③某校高三一級部和二級部的人數分別是m、n,本次期末考試兩級部數學平均分分別是a、b,則這兩個級部的數學平均分為+
;
④某中學采用系統抽樣方法,從該校高一年級全體800名學生中抽50名學生做牙齒健康檢查,現將800名學生從1到800進行編號.已知從497~513這16個數中取得的學生編號是503,則初始在第1小組1~16中隨機抽到的學生編號是7.
其中真命題的個數是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com