【題目】下列四個命題:
①樣本方差反映的是所有樣本數據與樣本平均值的偏離程度;
②某只股票經歷了10個跌停(下跌10%)后需再經過10個漲停(上漲10%)就可以回到原來的凈值;
③某校高三一級部和二級部的人數分別是m、n,本次期末考試兩級部數學平均分分別是a、b,則這兩個級部的數學平均分為+
;
④某中學采用系統抽樣方法,從該校高一年級全體800名學生中抽50名學生做牙齒健康檢查,現將800名學生從1到800進行編號.已知從497~513這16個數中取得的學生編號是503,則初始在第1小組1~16中隨機抽到的學生編號是7.
其中真命題的個數是( )
A.0 B.1 C.2 D.3
科目:高中數學 來源: 題型:
【題目】過曲線C1:-
=1(a>0,b>0)的左焦點F1作曲線C2:x2+y2=a2的切線,設切點為M,直線F1M交曲線C3:y2=2px(p>0)于點N,其中曲線C1與C3有一個共同的焦點,若|MF1|=|MN|,則曲線C1的離心率為( )
A. B.
-1 C.
+1 D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】葫蘆島市某高中進行一項調查:2012年至2016年本校學生人均年求學花銷(單位:萬元)的數據如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號 | 1 | 2 | 3 | 4 | 5 |
年求學花銷 | 3.2 | 3.5 | 3.8 | 4.6 | 4.9 |
(1)求關于
的線性回歸方程;
(2)利用(1)中的回歸方程,分析2012年至2016年本校學生人均年求學花銷的變化情況,并預測該地區2017年本校學生人均年求學花銷情況.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=aln x+ (a∈R).
(1)當a=1時,求f(x)在x∈[1,+∞)內的最小值;
(2)若f(x)存在單調遞減區間,求a的取值范圍;
(3)求證ln(n+1)> +
+
+…+
(n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在坐標原點,焦點在軸上的橢圓,離心率為
且過點
,過定點
的動直線與該橢圓相交于
、
兩點.
(1)若線段中點的橫坐標是
,求直線
的方程;
(2)在軸上是否存在點
,使
為常數?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某地區某高傳染性病毒流行期間,為了建立指標顯示疫情已受控制,以便向該地區居眾顯示可以過正常生活,有公共衛生專家建議的指標是“連續7天每天新增感染人數不超過5人”,根據連續7天的新增病例數計算,下列各選項中,一定符合上述指標的是( )
①平均數≤3;②標準差S≤2;③平均數
≤3且標準差S≤2;④平均數
≤3且極差小于或等于2;⑤眾數等于1且極差小于或等于1.
A.①② B.③④
C.③④⑤ D.④⑤
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業擬生產一種如圖所示的圓柱形易拉罐(上下底面及側面的厚度不計).易拉罐的體積為
,設圓柱的高度為
,底面半徑為
,且
.假設該易拉罐的制造費用僅與其表面積有關.已知易拉罐側面制造費用為
元/
,易拉罐上下底面的制造費用均為
元/
(
,
為常數,且
).
(1)寫出易拉罐的制造費用(元)關于
的函數表達式,并求其定義域;
(2)求易拉罐制造費用最低時的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com