【題目】已知拋物線E:,圓C:
.
若過拋物線E的焦點F的直線l與圓C相切,求直線l方程;
在
的條件下,若直線l交拋物線E于A,B兩點,x軸上是否存在點
使
為坐標原點
?若存在,求出點M的坐標;若不存在,請說明理由.
【答案】(1);(2)存在定點
【解析】
求得拋物線的焦點,設出直線的方程,運用直線和圓相切的條件:
,解方程可得所求直線方程;
設出A,B的坐標,聯立直線方程和拋物線方程,運用韋達定理和直線的斜率公式,化簡整理,解方程可得t,即M的坐標,即可得到結論.
由題意可得拋物線的焦點
,
當直線的斜率不存在時,過F的直線不可能與圓C相切,設直線的斜率為k,方程設為,
即,由圓心
到直線的距離為
,
當直線與圓相切時,,解得
,
即直線方程為;
可設直線方程為
,
,
,
聯立拋物線方程可得,則
,
,
x軸上假設存在點使
,
即有,可得
,
即為,
由,
,
可得,
即,即
,
符合題意;
當直線為,由對稱性可得
也符合條件.
所以存在定點使得
.
科目:高中數學 來源: 題型:
【題目】某種“籠具”由內,外兩層組成,無下底面,內層和外層分別是一個圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時需要將圓錐的頂端剪去,剪去部分和接頭忽略不計,已知圓柱的底面周長為,高為
,圓錐的母線長為
.
(1)求這種“籠具”的體積(結果精確到0.1);
(2)現要使用一種紗網材料制作50個“籠具”,該材料的造價為每平方米8元,共需多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.該原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖,在空間直角坐標系中的平面內,若函數
的圖象與
軸圍成一個封閉的區域
,將區域
沿
軸的正方向平移8個單位長度,得到幾何體如圖一,現有一個與之等高的圓柱如圖二,其底面積與區域
的面積相等,則此圓柱的體積為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形ABCD中,,
,F分別在線段BC和AD上,
,將矩形ABEF沿EF折起
記折起后的矩形為MNEF,且平面
平面ECDF.
Ⅰ
求證:
平面MFD;
Ⅱ
若
,求證:
;
Ⅲ
求四面體NFEC體積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓,
分別為其左、右焦點,過
的直線與此橢圓相交于
兩點,且
的周長為8,橢圓
的離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)在平面直角坐標系中,已知點
與點
,過
的動直線
(不與
軸平行)與橢圓相交于
兩點,點
是點
關于
軸的對稱點.求證:
(i)三點共線.
(ii).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com