精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線E,圓C

若過拋物線E的焦點F的直線l與圓C相切,求直線l方程;

的條件下,若直線l交拋物線EA,B兩點,x軸上是否存在點使為坐標原點?若存在,求出點M的坐標;若不存在,請說明理由.

【答案】1;(2)存在定點

【解析】

求得拋物線的焦點,設出直線的方程,運用直線和圓相切的條件:,解方程可得所求直線方程;設出A,B的坐標,聯立直線方程和拋物線方程,運用韋達定理和直線的斜率公式,化簡整理,解方程可得t,即M的坐標,即可得到結論.

由題意可得拋物線的焦點,

當直線的斜率不存在時,過F的直線不可能與圓C相切,設直線的斜率為k,方程設為,

,由圓心到直線的距離為,

當直線與圓相切時,,解得,

即直線方程為;

可設直線方程為,,,

聯立拋物線方程可得,則,,

x軸上假設存在點使

即有,可得,

即為

,,

可得,

,即,符合題意;

當直線為,由對稱性可得也符合條件.

所以存在定點使得

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某種籠具由內,外兩層組成,無下底面,內層和外層分別是一個圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時需要將圓錐的頂端剪去,剪去部分和接頭忽略不計,已知圓柱的底面周長為,高為,圓錐的母線長為.

1)求這種籠具的體積(結果精確到0.1);

2)現要使用一種紗網材料制作50籠具,該材料的造價為每平方米8元,共需多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.該原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖,在空間直角坐標系中的平面內,若函數的圖象與軸圍成一個封閉的區域,將區域沿軸的正方向平移8個單位長度,得到幾何體如圖一,現有一個與之等高的圓柱如圖二,其底面積與區域的面積相等,則此圓柱的體積為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直角梯形中,,點中點,且,現將三角形沿折起,使點到達點的位置,且與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

)求函數的極值點.

)設函數,其中,求函數上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓,直線,若直線上存在點,過點引圓的兩條切線,使得,則實數的取值范圍是( )

A. B. [,]

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形ABCD中,,,F分別在線段BCAD上,,將矩形ABEF沿EF折起記折起后的矩形為MNEF,且平面平面ECDF

求證:平面MFD

,求證:;

求四面體NFEC體積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓,分別為其左、右焦點,過的直線與此橢圓相交于兩點,且的周長為8,橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)在平面直角坐標系中,已知點與點,過的動直線(不與軸平行)與橢圓相交于兩點,點是點關于軸的對稱點.求證:

i三點共線.

ii

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四面體中,分別是線段的中點,,,,直線與平面所成的角等于

(Ⅰ)證明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视