(本題15分)已知點是橢圓E:
(
)上一點,F1、F2分別是橢圓E的左、右焦點,O是坐標原點,PF1⊥x軸.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設A、B是橢圓E上兩個動點,(
).求證:直線AB的斜率為定值;
(Ⅲ)在(Ⅱ)的條件下,當△PAB面積取得最大值時,求λ的值.
(1) (2)根據已知的向量的坐標關系,結合點差法來得到直線的斜率。
(3)
解析試題分析:解:(Ⅰ)∵PF1⊥x軸,
∴F1(-1,0),c=1,F2(1,0),
|PF2|=,2a=|PF1|+|PF2|=4,a=2,b2=3,
橢圓E的方程為:;…………………4分
(Ⅱ)設A(x1,y1)、B(x2,y2),由 得
(x1+1,y1-)+(x2+1,y2-
)=
(1,-
),
所以x1+x2=-2
,y1+y2=
(2-
)
………①
又,
,
兩式相減得3(x1+x2)(x1-x2)+ 4(y1+y2)(y1-y2)=0………..②
以①式代入可得AB的斜率k=為定值; ……………9分
(Ⅲ)設直線AB的方程為y=x+t,
與聯立消去y并整理得 x2+tx+t2-3=0, △=3(4-t2),
AB|=,
點P到直線AB的距離為d=,
△PAB的面積為S=|AB|×d=
, ………10分
設f(t)=S2=(t4-4t3+16t-16) (-2<t<2),
f’(t)=-3(t3-3t2+4)=-3(t+1)(t-2)2,由f’(t)=0及-2<t<2得t=-1.
當t∈(-2,-1)時,f’(t)>0,當t∈(-1,2)時,f’(t)<0,f(t)=-1時取得最大值,
所以S的最大值為.此時x1+x2=-t=1=
-2,
=3. ………………15分
考點:橢圓的方程,向量
點評:解析幾何中的圓錐曲線的求解,一般運用待定系數法來求解,同時運用設而不求的思想來研究直線與橢圓的位置關系,屬于中檔題。
科目:高中數學 來源: 題型:解答題
已知橢圓
經過點
其離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓
相交于A、B兩點,以線段
為鄰邊作平行四邊形OAPB,其中頂點P在橢圓
上,
為坐標原點.求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,的兩個頂點
、
的坐標分別是(-1,0),(1,0),點
是
的重心,
軸上一點
滿足
,且
.
(1)求的頂點
的軌跡
的方程;
(2)不過點的直線
與軌跡
交于不同的兩點
、
,當
時,求
與
的關系,并證明直線
過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率為
,短軸一個端點到右焦點的距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,為橢圓
上的一個動點,弦
、
分別過焦點
、
,當
垂直于
軸時,恰好有
(Ⅰ)求橢圓的離心率;
(Ⅱ)設.
①當點恰為橢圓短軸的一個端點時,求
的值;
②當點為該橢圓上的一個動點時,試判斷
是否為定值?
若是,請證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分15分)
在平面內,已知橢圓的兩個焦點為
,橢圓的離心率為
,
點是橢圓上任意一點, 且
,
(1)求橢圓的標準方程;
(2)以橢圓的上頂點為直角頂點作橢圓的內接等腰直角三角形
,這樣的等腰直角三角形是否存在?若存在請說明有幾個、并求出直角邊所在直線方程?若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,,
是拋物線
(
為正常數)上的兩個動點,直線AB與x軸交于點P,與y軸交于點Q,且
(Ⅰ)求證:直線AB過拋物線C的焦點;
(Ⅱ)是否存在直線AB,使得若存在,求出直線AB的方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分16分)
已知橢圓的離心率為
,一條準線
.
(1)求橢圓的方程;
(2)設O為坐標原點,是
上的點,
為橢圓
的右焦點,過點F作OM的垂線與以OM為直徑的圓
交于
兩點.
①若,求圓
的方程;
②若是l上的動點,求證:點
在定圓上,并求該定圓的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com