【題目】對某居民最近連續幾年的月用水量進行統計,得到該居民月用水量 (單位:噸)的頻率分布直方圖,如圖一.
(1)求的值,并根據頻率分布直方圖估計該居民月平均用水量
;
(2)已知該居民月用水量與月平均氣溫
(單位:℃)的關系可用回歸直線
模擬.2019年當地月平均氣溫
統計圖如圖二,把2019年該居民月用水量高于和低于
的月份作為兩層,用分層抽樣的方法選取5個月,再從這5個月中隨機抽取2個月,求這2個月中該居民恰有1個月用水量超過
的概率.
【答案】(1),
(2)
【解析】
(1)根據頻率分布直方圖的圖形面積之和為1列式求解.再利用頻率分布直方圖計算平均數的方法求解即可.
(2)利用枚舉法將所有可能的情況列舉,再根據古典概率的求解方法計算即可.
(1)由圖一可知,
該居民月平均用水
量約為
(2)由回歸直線方程知,
對應的月平均氣溫剛好為
,
再根據圖二可得,該居民2019年5月和10月的用水量剛好為,且該居民2019年有4個月每月用水量超過
,有6個月每月用水量低于
,
因此,用分層抽樣的方法得到的樣本中,有2個月(記為)每月用水量超過
,有3個月(記為
)每月用水量低于
,從中抽取2個,有
共10種結果,
其中恰有一個月用水量超過的有
共6種結果,
設“這2個月中恰有1個月用水量超過”為事件
,則
科目:高中數學 來源: 題型:
【題目】設雙曲線方程為,過其右焦點且斜率不為零的直線
與雙曲線交于A,B兩點,直線
的方程為
,A,B在直線
上的射影分別為C,D.
(1)當垂直于x軸,
時,求四邊形
的面積;
(2),
的斜率為正實數,A在第一象限,B在第四象限,試比較
與1的大;
(3)是否存在實數,使得對滿足題意的任意
,直線
和直線
的交點總在
軸上,若存在,求出所有的
值和此時直線
和
交點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓方程為.
(1)設橢圓的左右焦點分別為、
,點
在橢圓上運動,求
的值;
(2)設直線和圓
相切,和橢圓交于
、
兩點,
為原點,線段
、
分別和圓
交于
、
兩點,設
、
的面積分別為
、
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直四棱柱中,底面
為菱形,
且側棱
其中
為
的
交點.
(1)求點到平面
的距離;
(2)在線段上,是否存在一個點
,使得直線
與
垂直?若存在,求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,焦距為
,拋物線
的焦點F是橢圓
的頂點.
(1)求與
的標準方程;
(2)上不同于F的兩點P,Q滿足以PQ為直徑的圓經過F,且直線PQ與
相切,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列和
滿足:
,
,
,且對一切
,均有
.
(1)求證:數列為等差數列,并求數列
的通項公式;
(2)若,求數列
的前n項和
;
(3)設(
),記數列
的前n項和為
,問:是否存在正整數
,對一切
,均有
恒成立.若存在,求出所有正整數
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com