【題目】在等差數列{an}中,a1=25,S17=S9
(1)求{an}的通項公式;
(2)這個數列的前多少項的和最大?并求出這個最大值.
【答案】
(1)解:設等差數列{an}的公差為d,
由題意得,S17=S9,即 a10+a11+…+a17= =0,
∴2a1+25d=0,
又a1=25,解得d=﹣2,
∴an=27﹣2n
(2)解:由(1)得, =
=﹣n2+26n=169﹣(n﹣13)2,
∴當n=13時,Sn最大,且Sn的最大值為169
【解析】(1)先設公差為d,根據等差數列的前n項和公式、通項公式,列出方程求出公差d,再求出通項公式an;(2)根據(1)求出數列的前n項和Sn , 化簡后配方根據二次函數的性質,求出Sn的最大值及對應的n的值.
【考點精析】利用等差數列的通項公式(及其變式)和等差數列的前n項和公式對題目進行判斷即可得到答案,需要熟知通項公式:或
;前n項和公式:
.
科目:高中數學 來源: 題型:
【題目】養正中學新校區內有一塊以O為圓心,R(單位:米)為半徑的半圓形荒地(如圖),?倓仗幱媱潓ζ溟_發利用,其中弓形BCD區域(陰影部分)用于種植觀賞植物,△OBD區域用于種植花卉出售,其余區域用于種植草皮出售。已知種植觀賞植物的成本是每平方米20元,種植花卉的利潤是每平方米80元,種植草皮的利潤是每平方米30元。
(1)設(單位:弧度),用
表示弓形BCD的面積
(2)如果該?倓仗幯埬阋巹澾@塊土地。如何設計的大小才能使總利潤最大?并求出該最大值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax+ (其中a,b為常數)的圖象經過(1,2),(2,
)兩點.
(1)求函數f(x)的解析式;
(2)判斷f(x)的奇偶性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數,當x≥0時f(x)=2x﹣x2 ,
(1)求f(x)的表達式;
(2)設0<a<b,當x∈[a,b]時,f(x)的值域為 ,求a,b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin2x+2 sin2x+1﹣
.
(1)求函數f(x)的最小正周期和單調遞增區間;
(2)當x∈[ ,
]時,求函數f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=loga(x﹣3a)(a>0且a≠1),當點P(x,y)是函數y=f(x)圖象上的點時,點
Q(x﹣2a,﹣y)是函數y=g(x)圖象上的點.
(1)寫出函數y=g(x)的解析式;
(2)若當x∈[a+2,a+3]時,恒有|f(x)﹣g(x)|≤1,試確定a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓(x+2)2+y2=5關于直線x﹣y+1=0對稱的圓的方程為( )
A.(x﹣2)2+y2=5
B.x2+(y﹣2)2=5
C.(x﹣1)2+(y﹣1)2=5
D.(x+1)2+(y+1)2=5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com