【題目】若兩條直線和一個平面相交成等角,則這兩條直線的位置關系是( )
A.平行
B.異面
C.相交
D.平行、異面或相交
【答案】D
【解析】解:如圖,在正方體AC1中,
∵A1A⊥平面ABCD,∴A1A⊥AD,A1A⊥BC,
又∵AD∥BC,∴選項A有可能;
∵A1A⊥平面ABCD,∴A1A⊥AD,A1A⊥AB
, 又∵AD∩AB=A,∴選項B有可能;
∵A1A⊥平面ABCD,A1A⊥平面A1B1C1D1 , ∴A1A⊥AC,A1A⊥A1D1 ,
又∵AC與A1D1不在同一平面內,∴選項C有可能.
故選D.
【考點精析】利用空間中直線與直線之間的位置關系對題目進行判斷即可得到答案,需要熟知相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點.
科目:高中數學 來源: 題型:
【題目】20名學生某次數學考試成績(單位:分)的頻率分布直方圖如圖:
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)分別求出成績落在[50,60)與[60,70)中的學生人數;
(Ⅲ)從成績在[50,70)的學生任選2人,求此2人的成績都在[60,70)中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求到平面
的距離
(2)在線段上是否存在一點
,使
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數),在極坐標系(與直角坐標系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的方程為
.
(1)求圓的直角坐標方程;
(2)設圓與直線
交于點
,若點
的坐標為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(sinA,cosA),
=(cosB,sinB),
=sin2C且A、B、C分別為△ABC的三邊a,b,c所對的角.
(1)求角C的大;
(2)若sinA,sinC,sinB成等比數列,且 =18,求c的值..
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列中,
,
,
.數列
的前n項和為
,滿足
,
.
(1)求數列的通項公式;
(2)數列能否為等差數列?若能,求其通項公式;若不能,試說明理由;
(3)若數列是各項均為正整數的遞增數列,設
,則當
,
,
和
,
,
均成等差數列時,求正整數
,
,
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P﹣ABCD及其三視圖如下圖所示,E是側棱PC上的動點.
(Ⅰ)求四棱錐P﹣ABCD的體積;
(Ⅱ)不論點E在何位置,是否都有BD⊥AE?試證明你的結論;
(Ⅲ)若點E為PC的中點,求二面角D﹣AE﹣B的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國家“十三五”計劃,提出創新興國,實現中國創新,某市教育局為了提高學生的創新能力,把行動落到實處,舉辦一次物理、化學綜合創新技能大賽,某校對其甲、乙、丙、丁四位學生的物理成績(x)和化學成績(y)進行回歸分析,求得回歸直線方程為y=1.5x﹣35.由于某種原因,成績表(如表所示)中缺失了乙的物理和化學成績.
甲 | 乙 | 丙 | 丁 | |
物理成績(x) | 75 | m | 80 | 85 |
化學成績(y) | 80 | n | 85 | 95 |
綜合素質 | 155 | 160 | 165 | 180 |
(1)請設法還原乙的物理成績m和化學成績n;
(2)在全市物理化學科技創新比賽中,由甲、乙、丙、丁四位學生組成學校代表隊參賽.共舉行3場比賽,每場比賽均由賽事主辦方從學校代表中隨機抽兩人參賽,每場比賽所抽的選手中,只要有一名選手的綜合素質分高于160分,就能為所在學校贏得一枚榮譽獎章.若記比賽中贏得榮譽獎章的枚數為ξ,試根據上表所提供數據,預測該校所獲獎章數ξ的分布列與數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com