【題目】某創業團隊擬生產兩種產品,根據市場預測,
產品的利潤與投資額成正比(如圖1),
產品的利潤與投資額的算術平方根成正比(如圖2).(注: 利潤與投資額的單位均為萬元)
(1)分別將兩種產品的利潤
、
表示為投資額
的函數;
(2)該團隊已籌集到10 萬元資金,并打算全部投入兩種產品的生產,問:當
產品的投資額為多少萬元時,生產
兩種產品能獲得最大利潤,最大利潤為多少?
【答案】(1),
;(2)6.25, 4.0625.
【解析】試題分析:(1)由產品的利潤與投資額成正比,
產品的利潤與投資額的算術平方根成正比,結合函數圖象,我們可以利用待定系數法來求兩種產品的收益與投資的函數關系;(2)由(1)的結論,我們設
產品的投資額為
萬元,則
產品的投資額為
萬元,這時可以構造出一個關于收益
的函數,然后利用求函數最大值的方法進行求解.
試題解析:(1) ,
.
(2) 設產品的投資額為
萬元,則
產品的投資額為
萬元,
創業團隊獲得的利潤為萬元,
則
,
令,
,即
,
當,即
時,
取得最大值4.0625.
答:當產品的投資額為6.25萬元時,創業團隊獲得的最大利潤為4.0625 萬元.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x2+2ax﹣a﹣1,x∈[0,2],a為常數.
(1)求f(x)的最小值g(a)的解析式;
(2)在(1)中,是否存在最小的整數m,使得g(a)﹣m≤0對于任意a∈R均成立,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種產品的廣告費支出x與銷售額y(單位:萬元)之間有如表對應數據:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求廣告費支出x與銷售額y回歸直線方程 =bx+a(a,b∈R);
已知b= ,
(2)在已有的五組數據中任意抽取兩組,求至少有一組數據其預測值與實際值之差的絕對值不超過5的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設橢圓:
的離心率為
,
分別為橢圓
的左、右頂點,
為右焦點,直線
與
的交點到
軸的距離為
,過點
作
軸的垂線
,
為
上異于點
的一點,以
為直徑作圓
.
(1)求的方程;
(2)若直線與
的另一個交點為
,證明:直線
與圓
相切.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為橢圓
上的動點,過點
作
軸的垂線段
,
為垂足,點
滿足
.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)若兩點分別為橢圓
的左右頂點,
為橢圓
的左焦點,直線
與橢圓
交于點
,直線
的斜率分別為
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com