【題目】某醫院為篩查某種疾病,需要檢驗血液是否為陽性,現有份血液樣本,有以下兩種檢驗方式:①逐份檢驗,列需要檢驗
次;②混合檢驗,將其
(
且
)份血液樣本分別取樣混合在一起檢驗.若檢驗結果為陰性,這
份的血液全為陰性,因而這
份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這
份血液究竟哪幾份為陽性,就要對這
份再逐份檢驗,此時這
份血液的檢驗次數總共為
次.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為
.
(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗的方式,求恰好經過3次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現取其中(
且
)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為
,采用混合檢驗方式,樣本需要檢驗的總次數為
.
(i)運用概率統計的知識,若,試求
關于
的函數關系式
;
(ii)若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數期望值更少,求
的最大值.
參考數據:,
,
.
科目:高中數學 來源: 題型:
【題目】PM2.5是空氣質量的一個重要指標,我國PM2.5標準采用世衛組織設定的最寬限值,即PM2.5日均值在35μg/m3以下空氣質量為一級,在35μg/m3~75μg/m3之間空氣質量為二級,在75μg/m3以上空氣質量為超標.如圖是某市2019年12月1日到10日PM2.5日均值(單位:μg/m3)的統計數據,則下列敘述不正確的是( )
A.這10天中,12月5日的空氣質量超標
B.這10天中有5天空氣質量為二級
C.從5日到10日,PM2.5日均值逐漸降低
D.這10天的PM2.5日均值的中位數是47
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】自湖北爆發新型冠狀病毒肺炎疫情以來,湖北某市醫護人員和醫療、生活物資嚴重匱乏,全國各地紛紛馳援.某運輸隊接到從武漢送往該市物資的任務,該運輸隊有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運輸隊每天至少運送240t物資.已知每輛卡車每天往返的次數為A型卡車5次,B型卡車4次,每輛卡車每天往返的成本A型卡車1200元,B型卡車1800元,則每天派出運輸隊所花的成本最低為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國著名數學家華羅庚先生曾說:數缺形時少直觀,形缺數時難入微,數形結合百般好,隔裂分家萬事休.在數學的學習和研究中,常用函數的圖象研究函數的性質,也常用函數的解析式來琢磨函數的圖象特征.如函數的圖象大致為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】由甲、乙、丙三個人組成的團隊參加某項闖關游戲,第一關解密碼鎖,3個人依次進行,每人必須在1分鐘內完成,否則派下一個人.3個人中只要有一人能解開密碼鎖,則該團隊進入下一關,否則淘汰出局.根據以往100次的測試,分別獲得甲、乙解開密碼鎖所需時間的頻率分布直方圖.
(1)若甲解開密碼鎖所需時間的中位數為47,求a、b的值,并分別求出甲、乙在1分鐘內解開密碼鎖的頻率;
(2)若以解開密碼鎖所需時間位于各區間的頻率代替解開密碼鎖所需時間位于該區間的概率,并且丙在1分鐘內解開密碼鎖的概率為0.5,各人是否解開密碼鎖相互獨立.
①求該團隊能進入下一關的概率;
②該團隊以怎樣的先后順序派出人員,可使所需派出的人員數目X的數學期望達到最小,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),在以坐標原點為極點,
軸的正半軸為極軸的極坐標系中,曲線
的極坐標方程為
(
且
).
(I)求直線的極坐標方程及曲線
的直角坐標方程;
(Ⅱ)已知是直線
上的一點,
是曲線
上的一點,
,
,若
的最大值為2,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的右焦點為
,過
作兩條直線分別與圓
:
相切于
,且
為直角三角形. 又知橢圓
上的點與圓
上的點的最大距離為
.
(1)求橢圓及圓
的方程;
(2)若不經過點的直線
:
(其中
)與圓
相切,且直線
與橢圓
交于
,求
的周長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com