【題目】如圖,在三棱柱與四棱錐
的組合體中,已知
平面
,四邊形
是平行四邊形,
,
,
,
,設
是線段
中點.
(1)求證: 平面
;
(2)證明:平面平面
;
(3)求四棱錐的體積.
【答案】(1)見解析;(2)見解析;(3).
【解析】試題分析:取的中點
,連接
,易證
為平行四邊形,從而得到
,再利用線面平行的判定定理即可;
(2)根據,證得
,即
,進一步可證
,從而證得
面
,于是得
平面
,利用面面垂直的判定定理可得結論;
(3)利用等體積法,即可求得點到平面
的距離.
試題解析:
(1)證明:取的中點
,連結
,
,
,則
、
、
三點共線,
∵為三棱柱,∴平面
平面
,
故且
,∴四邊形
為平行四邊形,∴
,又∵
面
,
面
面
.
(2)證明:∵,
,
,作
于
,
可得,
,
,則
,
∴,即
,
又平面
,
平面
,
,
在三棱柱中,
而
,
∴平面
,又
,得
平面
,
而平面
,∴平面
平面
.
(3)由(2)知, ,又
,∴
平面
,
即為四棱錐
的高,
,又
,
∴.
科目:高中數學 來源: 題型:
【題目】在各項為正的數列{an}中,數列的前n項和Sn滿足Sn= (an+
),
(1)求a1 , a2 , a3;
(2)由(1)猜想數列{an}的通項公式,并用數學歸納法證明你的猜想.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市出租車的收費標準是:3千米以內(含3千米),收起步價8元;3千米以上至8千米以內(含8千米),超出3千米的部分按元/千米收。8千米以上,超出8千米的部分按2元/千米收取.
(1)計算某乘客搭乘出租車行駛7千米時應付的車費;
(2)試寫出車費 (元)與里程
(千米)之間的函數解析式并畫出圖像;
(3)小陳周末外出,行程為10千米,他設計了兩種方案:
方案1:分兩段乘車,先乘一輛行駛5千米,下車換乘另一輛車再行5千米至目的地
方案2:只乘一輛車至目的地,試問:以上哪種方案更省錢,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱與四棱錐
的組合體中,已知
平面
,四邊形
是平行四邊形,
,
,
,
,設
是線段
中點.
(1)求證: 平面
;
(2)證明:平面平面
;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大西洋鮭魚每年都要逆流而上,游回產地產卵,研究鮭魚的科學家發現鮭魚的游速(單位:
)與其耗氧量單位數
之間的關系可以表示為函數
,其中
為常數,已知一條鮭魚在靜止時的耗氧量為100個單位;而當它的游速為
時,其耗氧量為2700個單位.
(1)求出游速與其耗氧量單位數
之間的函數解析式;
(2)求當一條鮭魚的游速不高于時,其耗氧量至多需要多少個單位?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“共享單車”的出現,為我們提供了一種新型的交通方式.某機構為了調查人們對此種交通方式的滿意度,從交通擁堵不嚴重的 城市和交通擁堵嚴重的
城市分別隨機調查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖(如圖所示):
若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據此樣本完成此 列聯表,并據此樣本分析是否有
的把握認為城市擁堵與認可共享單車有關:
合計 | |||
認可 | |||
不認可 | |||
合計 |
附:參考數據:(參考公式: )
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市自來水公司每兩個月(記為一個收費周期)對用戶收一次水費,收費標準如下:當每戶用水量不超過噸時,按每噸
元收;當該用戶用水量超過
噸時,超出部分按每噸
元收取.
(1)記某用戶在一個收費周期的用水量為噸,所繳水費為
元,寫出
關于
的函數解析式.
(2)在某一個收費周期內,若甲、乙兩用戶所繳水費的和為元,且甲、乙兩用戶用水量之比為
,試求出甲、乙兩用戶在該收費周期內各自的用水量和水費.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com