精英家教網 > 高中數學 > 題目詳情

【題目】一個總體容量為60,其中的個體編號為0001,02,59.現需從中抽取一個容量為7的樣本,請從隨機數表的倒數第5(下表為隨機數表的最后5)1112列的18開始,依次向下,到最后一行后向右,直到取足樣本,則抽取樣本的號碼是_____________

95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95

38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80

82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50

24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49

96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60

【答案】1805,07,3559,26,39

【解析】

從隨機數表的倒數第5行第1112列開始,依次向下,到最后一行后向右讀取兩位數,大于等于60的數據應舍去,與前面取到的數據重復的也舍去,直到取足7個樣本號碼為止.

解:根據題意,60個個體編號為00,01,,59,現從中抽取一容量為7的樣本,

從隨機數表的倒數第5行第1112列開始,向下讀取,到最后一行后向右

1881(舍去),90(舍去),82(舍去),05,98(舍去),90(舍去),07,35,82(舍去),96(舍去),59,26,94(舍去),66(舍去),397個;

所以抽取樣本的號碼是1800,46,40,54,20,56

故答案為:1805,07,35,59,26,39

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設平面平面, , , , ,

(1)證明: 平面

(2) 求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果存在函數為常數),使得對函數定義域內任意都有成立,那么稱為函數的一個“線性覆蓋函數”.給出如下四個結論:

①函數存在“線性覆蓋函數”;

②對于給定的函數,其“線性覆蓋函數”可能不存在,也可能有無數個;

為函數的一個“線性覆蓋函數”;

④若為函數的一個“線性覆蓋函數”,則

其中所有正確結論的序號是___________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,且).

(Ⅰ)求函數的單調區間;

(Ⅱ)求函數上的最大值.

【答案】(Ⅰ)的單調增區間為,單調減區間為.(Ⅱ)當時, ;當時, .

【解析】試題分析】(I)利用的二階導數來研究求得函數的單調區間.(II) 由(Ⅰ)得上單調遞減,在上單調遞增,由此可知.利用導數和對分類討論求得函數在不同取值時的最大值.

試題解析】

(Ⅰ),

,則.

,∴上單調遞增,

從而得上單調遞增,又∵

∴當時, ,當時, ,

因此, 的單調增區間為,單調減區間為.

(Ⅱ)由(Ⅰ)得上單調遞減,在上單調遞增,

由此可知.

, ,

.

,

.

∵當時, ,∴上單調遞增.

又∵,∴當時, ;當時, .

①當時, ,即,這時, ;

②當時, ,即,這時, .

綜上, 上的最大值為:當時, ;

時, .

[點睛]本小題主要考查函數的單調性,考查利用導數求最大值. 與函數零點有關的參數范圍問題,往往利用導數研究函數的單調區間和極值點,并結合特殊點,從而判斷函數的大致圖像,討論其圖象與軸的位置關系,進而確定參數的取值范圍;或通過對方程等價變形轉化為兩個函數圖象的交點問題.

型】解答
束】
22

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .

(Ⅰ) 寫出圓 的參數方程和直線的直角坐標方程;

( Ⅱ ) 設直線軸和軸的交點分別為為圓上的任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過點任作一直線交拋物線兩點,過兩點分別作拋物線的切線

(Ⅰ)記的交點的軌跡為,求的方程;

(Ⅱ)設與直線交于點(異于點),且,.問是否為定值?若為定值,請求出定值.若不為定值,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將一個總體的100個個體編號為0,1,2,,99,并依次將其分為10個組,組號為0,1,2,,9.要用系統抽樣法抽取一個容量為10的樣本,如果在第0(號碼為0—9)隨機抽取的號碼為2,則抽取的10個號碼為______________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為建立健全國家學生體質健康監測評價機制,激勵學生積極參加身體鍛煉,教育部印發《國家學生體質健康標準(2014年修訂)》,要求各學校每學期開展覆蓋本校各年級學生的《標準》測試工作,并根據學生每個學期總分評定等級.某校決定針對高中學生,每學期進行一次體質健康測試,以下是小明同學六個學期體質健康測試的總分情況.

學期

1

2

3

4

5

6

總分(分)

512

518

523

528

534

535

(1)請根據上表提供的數據,用相關系數說明的線性相關程度,并用最小二乘法求出關于的線性回歸方程(線性相關系數保留兩位小數);

(2)在第六個學期測試中學校根據 《標準》,劃定540分以上為優秀等級,已知小明所在的學習小組10個同學有6個被評定為優秀,測試后同學們都知道了自己的總分但不知道別人的總分,小明隨機的給小組內4個同學打電話詢問對方成績,優秀的同學有人,求的分布列和期望.

參考公式: ,

相關系數;

參考數據:,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知冪函數f(x)=,其中2<m<2,m∈Z,滿足:

(1)f(x)是區間(0,+∞)上的增函數;

(2)對任意的x∈R,都有f(x) +f(x)=0.

求同時滿足條件(1)、(2)的冪函數f(x)的解析式,并求x∈[0,3]時,f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓)的離心率,左、右焦點分別為、,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段的垂直平分線交于點

(1)求點的軌跡的方程;

(2)當直線與橢圓相切,交于點,,當時,求的直線方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视