【題目】下列說法:
①將一組數據中的每個數據都加上或減去同一個常數后,方差恒不變;
②設有一個回歸方程,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程必過
;
④在一個列聯表中,由計算得是
,則有
的把握確認這兩個變量間有關系.
其中錯誤的個數是( )
本題可以參考獨立性檢驗臨界值表:
0.05 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.0B.1C.2D.3
【答案】B
【解析】
根據方差的定義和性質即可判斷①;根據回歸方程可知
,則
和
成負相關,再根據回歸方程的性質,即可判斷②;由于樣本中心點一定在線性回歸方程上,即可判斷③;由已知的
,可判斷出“兩個變量間有關系”的犯錯的概率不超過
,求出有把握的概率,即可判斷④;綜合即可得出答案.
解:將一組數據中的每個數據都加上或減去同一個常數后,
每個數與平均數的差值不變,因而方差恒不變,故①正確;
根據回歸方程可知,則
和
成負相關,
當x增加一個單位時,y平均減少5個單位,故②錯誤;
線性回歸方程必過樣本點中心,故③正確;
由于,
所以判斷“兩個變量間有關系”的犯錯的概率不超過,
所以有的把握確認這兩個變量有關系,故④正確;
因而錯誤的只有②,即錯誤的個數為1.
故選:B.
科目:高中數學 來源: 題型:
【題目】如圖所示,三國時代數學家趙爽在《周髀算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為,若向弦圖內隨機拋擲500顆米粒(大小忽略不計,取
),則落在小正方形(陰影)內的米粒數大約為( )
A. 134 B. 67 C. 200 D. 250
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年8月31日,十三屆全國人大常委會第五次會議表決通過了關于修改個人所得稅法的決定,這是我國個人所得稅法自1980年出臺以來第七次大修為了讓納稅人盡早享受減稅紅利,在過渡期對納稅個人按照下表計算個人所得稅,值得注意的是起征點變為5000元,即如表中“全月應納稅所得額”是納稅者的月薪金收入減去5000元后的余額.
級數 | 全月應納稅所得額 | 稅率 |
1 | 不超過3000元的部分 | |
2 | 超過3000元至12000元的部分 | |
3 | 超過12000元至25000元的部分 | |
某企業員工今年10月份的月工資為15000元,則應繳納的個人所得稅為______元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班有20人參加語文、數學考試各一次,考試按10分制評分,即成績是0到10的整數.考試結果是:(1)沒有0分;(2)沒有兩個同學的語文、數學成績都相同.我們說“同學比
的成績好”是指“同學
的語文、數學成績都不低于
”.證明:存在三個同學
、
、
,使得同學
比
的成績好,同學
比
的成績好.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】酒駕是嚴重危害交通安全的違法行為.為了保障交通安全,根據國家有關規定:100mL血液中酒精含量低于20mg的駕駛員可以駕駛汽車,酒精含量達到20~79mg的駕駛員即為酒后駕車,80mg及以上認定為醉酒駕車.假設某駕駛員喝了一定量的酒后,其血液中的酒精含量上升到了1mg/mL.如果在停止喝酒以后,他血液中酒精含量會以每小時30%的速度減少,那么他至少經過幾個小時才能駕駛汽車?( )(參考數據:lg0.2≈﹣0.7,1g0.3≈﹣0.5,1g0.7≈﹣0.15,1g0.8≈﹣0.1)
A.1B.3C.5D.7
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2名女生、4名男生排成一排,求:
(1)2名女生不相鄰的不同排法共有多少種?
(2)女生甲必須排在女生乙的左邊(不一定相鄰)的不同排法共有多少種?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天干地支紀年法,源于中國,中國自古便有十天干與十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀年法是按順序以一個天干和一個地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推,排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推,已知2016年為丙申年,那么到改革開放100年時,即2078年為________年
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
在平面直角坐標系xOy中,點B與點A(-1,1)關于原點O對稱,P是動點,且直線AP與BP的斜率之積等于.
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)設直線AP和BP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB與△PMN的面積相等?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com