【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區間
,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:
以最高氣溫位于各區間的頻率估計最高氣溫位于該區間的概率.
(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;
(2)設六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量
(單位:瓶)為多少時,
的數學期望達到最大值?
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 兩個變量的相關關系一定是線性相關
B. 兩個隨機變量的線性相關線越強,則相關系數的絕對值就越接近于0
C. 在回歸直線方程中,當解釋變量
每增加1個單位時,預報變量
平均增加1個單位
D. 對分類變量與
,隨機變量
的觀測值
越大,則判斷“
與
有關系”的把握程度越大
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某服裝批發市場1-5月份的服裝銷售量與利潤
的統計數據如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷售量 | 3 | 6 | 4 | 7 | 8 |
利潤 | 19 | 34 | 26 | 41 | 46 |
(1)從這五個月的利潤中任選2個,分別記為,
,求事件“
,
均不小于30”的概率;
(2)已知銷售量與利潤
大致滿足線性相關關系,請根據前4個月的數據,求出
關于
的線性回歸方程
;
(3)若由線性回歸方程得到的利潤的估計數據與真實數據的誤差不超過2萬元,則認為得到的利潤的估計數據是理想的.請用表格中第5個月的數據檢驗由(2)中回歸方程所得的第5個月的利潤的估計數據是否理想.參考公式: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機對50名家用轎車駕駛員進行調查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過的有20人,不超過
的有10人.在20名女性駕駛員中,平均車速超過
的有5人,不超過
的有15人.
(1)完成下面的列聯表,并判斷是否有99.5%的把握認為平均車速超過的人與性別有關;
(2)以上述數據樣本來估計總體,現從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為女性且車速不超過的車輛數為
,若每次抽取的結果是相互獨立的,求
的數學期望.
參考公式:,其中
.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知橢圓C: +
=1(a>b>0)的焦距為2,直線y=x被橢圓C截得的弦長為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點M(x0 , y0)是橢圓C上的動點,過原點O引兩條射線l1 , l2與圓M:(x﹣x0)2+(y﹣y0)2= 分別相切,且l1 , l2的斜率k1 , k2存在.
①試問k1k2是否定值?若是,求出該定值,若不是,說明理由;
②若射線l1 , l2與橢圓C分別交于點A,B,求|OA||OB|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】候鳥每年都要隨季節的變化而進行大規模地遷徙,研究某種鳥類的專家發現,該種鳥類的飛行速度v(單位:m/s)與其耗氧量M之間的關系為:,(其中a,b是實數),據統計,該種鳥類在靜止的時間其耗氧量為45個單位,而其耗氧量為105個單位時,其飛行速度為1m/s.
(1)求出a,b的值;
(2)若這種鳥類為趕路程,飛行的速度不能低于2m/s,則其耗氧量至少要多少個單位。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,平面A1ABB1⊥底面ABCD,且∠ABC= .
(1)求證:B1C1∥平面BCD1;
(2)求證:平面A1ABB1⊥平面BCD1 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com