【題目】在創建“全國文明衛生城”過程中,運城市“創城辦”為了調查市民對創城工作的了解情況,進行了一次創城知識問卷調查(一位市民只能參加一次),通過隨機抽樣,得到參加問卷調查的人的得分統計結果如表所示:.
組別 | |||||||
頻數 |
(1)由頻數分布表可以大致認為,此次問卷調查的得分似為這
人得分的平均值(同一組中的數據用該組區間的中點值作代表),利用該正態分布,求
;
(2)在(1)的條件下,“創城辦”為此次參加問卷調查的市民制定如下獎勵方案:
①得分不低于的可以獲贈
次隨機話費,得分低于
的可以獲贈
次隨機話費;
②每次獲贈的隨機話費和對應的概率為:
贈送話費的金額(單位:元) | ||
概率 |
現有市民甲參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求
的分布列與數學期望.
附:參考數據與公式:,若
,則
,
,
科目:高中數學 來源: 題型:
【題目】已知橢圓與拋物線
有共同的焦點,且離心率為
,設
分別是
為橢圓的上下頂點
(1)求橢圓的方程;
(2)過點與
軸不垂直的直線
與橢圓
交于不同的兩點
,當弦
的中點
落在四邊形
內(含邊界)時,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為 (t為參數,a∈R).在以坐標原點為極點,x軸的非負半軸為極軸的極坐標系中,曲線C的極坐標方程為
.
(1)若點A(0,4)在直線l上,求直線l的極坐標方程;
(2)已知a>0,若點P在直線l上,點Q在曲線C上,若|PQ|最小值為,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐的底面ABCD是邊長為2的正方形,且
.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當PA最長時,則
______________;四棱錐P-ABCD的體積為______________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com