【題目】下列判斷正確的是( )
A.“”是“
”的充分不必要條件
B.函數的最小值為2
C.當時,命題“若
,則
”為真命題
D.命題“,
”的否定是“
,
”
科目:高中數學 來源: 題型:
【題目】交大設計學院植物園準備用一塊邊長為4百米的等邊ΔABC田地(如圖)建立芳香植物生長區、植物精油提煉處與植物精油體驗點.田地內擬建筆直小路MN、AP,其中M、N分別為AC、BC的中點,點P在CN上.規劃在小路MN和AP的交點O(O與M、N不重合)處設立植物精油體驗點,圖中陰影部分為植物精油提煉處,空白部分為芳香植物生長區,A、N為出入口(小路寬度不計).為節約資金,小路MO段與OP段建便道,供芳香植物培育之用,費用忽略不計,為車輛安全出入,小路AO段的建造費用為每百米4萬元,小路ON段的建造費用為每百米3萬元.
(1)若擬建的小路AO段長為百米,求小路ON段的建造費用;
(2)設∠BAP=,求
的值,使得小路AO段與ON段的建造總費用最小,并求岀最小建造總費用(精確到元).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為D的函數y=f(x),如果存在區間[m,n]D,同時滿足:
①f(x)在[m,n]內是單調函數;
②當定義域是[m,n]時,f(x)的值域也是[m,n].則稱[m,n]是該函數的“和諧區間”.
(1)證明:[0,1]是函數y=f(x)=x2的一個“和諧區間”.
(2)求證:函數不存在“和諧區間”.
(3)已知:函數(a∈R,a≠0)有“和諧區間”[m,n],當a變化時,求出n﹣m的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知(m,n為常數),在
處的切線方程為
.
(Ⅰ)求的解析式并寫出定義域;
(Ⅱ)若,使得對
上恒有
成立,求實數
的取值范圍;
(Ⅲ)若有兩個不同的零點
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,過
作
軸的垂線交橢圓
于點
(點
在
軸上方),斜率為
的直線交橢圓
于
,
兩點,過點
作直線
交橢圓
于點
,且
,直線
交
軸于點
.
(1)設橢圓的離心率為
,當點
為橢圓
的右頂點時,
的坐標為
,求
的值.
(2)若橢圓的方程為
,且
,是否存
在使得
成立?如果存在,求出
的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com