精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=|x2+bx|(b∈R),當x∈[0,1]時,f(x)的最大值為M(b),則M(b)的最小值是(
A.3﹣2
B.4﹣2
C.1
D.5﹣2

【答案】A
【解析】解:因為函數f(x)=|x2+bx|=| |,

對稱軸x=﹣ ,當﹣ ≤0,即b≥0時,f(x)在[0,1]遞增,

故M(b)=f(1)=b+1,

0<﹣ 即﹣1<b<0時,f(x)的最大值是f(﹣ )或f(1),

令f(﹣ )= >f(1)=b+1,解得:﹣1<b<2(1﹣ ),

故﹣1<b<2(1﹣ )時,M(b)= ,

2(1﹣ )<b<0時,M(b)=b+1,

≤﹣ 即≤﹣1時,M(b)= ,

故M(b)=

故b=2(1﹣ )時,M(b)最小,最小值是3﹣2 ,

故選:A.

【考點精析】認真審題,首先需要了解函數的最值及其幾何意義(利用二次函數的性質(配方法)求函數的最大(小)值;利用圖象求函數的最大(小)值;利用函數單調性的判斷函數的最大(小)值).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】市疾病控制中心今日對我校高二學生進行了某項健康調查,調查的方法是采取分層抽樣的方法抽取樣本.我校高二學生共有2000人,抽取了一人200人的樣本,樣本中男生103人,請問我校共有女生(
A.970
B.1030
C.997
D.206

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+bx+c,其對稱軸為y軸(其中b,c為常數) (Ⅰ)求實數b的值;
(Ⅱ)記函數g(x)=f(x)﹣2,若函數g(x)有兩個不同的零點,求實數c的取值范圍;
(Ⅲ)求證:不等式f(c2+1)>f(c)對任意c∈R成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)= 的定義域為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知公差不為0的等差數列{an}的前n項和為 ,若S3=a4+2,且a1 , a3 , a13成等比數列
(1)求{an}的通項公式;
(2)設 ,求數列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖①y=ax , ②y=bx , ③y=cx , ④y=dx , 根據圖象可得a、b、c、d與1的大小關系為( )

A.a<b<1<c<d
B.b<a<1<d<c
C.1<a<b<c<d
D.a<b<1<d<c

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知方程x2+ax+b=0.
(1)若方程的解集只有一個元素,求實數a,b滿足的關系式;
(2)若方程的解集有兩個元素分別為1,3,求實數a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面為矩形,PA是四棱錐的高,PB與DC所成角為45°,F是PB的中點,E是BC上的動點.
(Ⅰ)證明:PE⊥AF;
(Ⅱ)若BC=2BE=2 AB,求直線AP與平面PDE所成角的大小..

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)的定義域為R,并滿足以下條件:①對任意x∈R,有f(x)>0;②對任意x,y∈R,有f(xy)=[f(x)]y;③
(1)求證:f(x)在R上是單調增函數;
(2)若f(4x+a2x+1﹣a2+2)≥1對任意x∈R恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视