(本小題滿分12)如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,點D是AB的中點
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求二面角的平面角的正切值.
(Ⅰ)證明:直三棱柱ABC-A1B1C1,底面三邊長AC=3,BC=4,AB=5,
∴ AC⊥BC, …………………1分
又 AC⊥,且
∴ AC⊥平面BCC1,又平面BCC1 ……………………………………3分
∴ AC⊥BC1 ………………………………………………………………4分
(Ⅱ)解法一:取中點
,過
作
于
,連接
…………5分
是
中點,
∴ ,又
平面
∴平面
,
又平面
,
平面
∴
∴ 又
且
∴平面
,
平面
………7分
∴ 又
∴是二面角
的平面角 ……………………………………8分
AC=3,BC=4,AA1=4,
∴在中,
,
,
∴ …………………………………………11分
∴二面角的正切值為
………………………
…………………12分
解法二:以
分別為
軸建立如圖所示空間直角坐標系…………5分
AC=3,BC=4,AA1=4,
∴,
,
,
,
∴,
平面的法向量
,&n
解析
科目:高中數學 來源: 題型:解答題
已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是 AB、PC的中點.
(1) 求證:EF∥平面PAD;
(2) 求證:EF⊥CD;
(3) 若∠PDA=45°,求EF與平面ABCD所成的角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)如圖,在直三棱柱ABC-A1B1C1中,點D、E分別在邊BC、
B1C1上,CD=B1E=AC,ÐACD=60°.
求證:(1)BE∥平面AC1D;
(2)平面ADC1⊥平面BCC1B1.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,兩條異面直線AB,CD與三個平行平面α,β,γ分別相交于A,E,B及
C,F,D,又AD、BC與平面β的交點為H,G.
求證:四邊形EHFG為平行四邊形。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(14分)如圖,四棱錐P—ABCD的底面是AB=2,BC=
的矩形,側面PAB
是等邊三角形,且側面PAB⊥底面ABCD
(I)證明:側面PAB⊥側面PBC;
(II)求側棱PC與底面ABCD所成的角;
(III)求直線AB與平面PCD的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com