【題目】已知函數(
).
(Ⅰ)若,求函數
的單調遞增區間;
(Ⅱ)若函數,對于曲線
上的兩個不同的點
,
,記直線
的斜率為
,若
,證明:
.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程為
(
為參數,
),以坐標原點為極點,
軸正半軸為極軸建立極坐標系,圓
的極坐標方程為
.
(Ⅰ)討論直線與圓
的公共點個數;
(Ⅱ)過極點作直線的垂線,垂足為
,求點
的軌跡與圓
相交所得弦長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地隨著經濟的發展,居民收入逐年增長,下表是該地一建設銀行連續五年的儲蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數據進行了處理, 得到下表2:
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關于t的線性回歸方程;
(Ⅱ)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?
(附:對于線性回歸方程,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據環境保護部《環境空氣質量指數()技術規定》,空氣質量指數(
)在201—300之間為重度污染;在301—500之間為嚴重污染.依據空氣質量預報,同時綜合考慮空氣污染程度和持續時間,將空氣重污染分4個預警級別,由輕到重依次為預警四級、預警三級、預警二級、預警一級,分別用藍、黃、橙、紅顏色標示,預警一級(紅色)為最高級別.(一)預警四級(藍色):預測未來1天出現重度污染;(二)預警三級(黃色):預測未來1天出現嚴重污染或持續3天出現重度污染;(三)預警二級(橙色);預測未來持續3天交替出現重度污染或嚴重污染;(四)預警一級(紅色);預測未來持續3天出現嚴重污染.
某城市空氣質量監測部門對近300天空氣中濃度進行統計,得出這300天
濃度的頻率分布直方圖如圖,將
濃度落入各組的頻率視為概率,并假設每天的
濃度相互獨立.
(1)求當地監測部門發布顏色預警的概率;
(2)據當地監測站數據顯示未來4天將出現3天嚴重污染,求監測部門發布紅色預警的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的一段圖象如圖所示
(1)求f(x)的解析式;
(2)把f(x)的圖象向左至少平移多少個單位,才能使得到的圖象對應的函數為偶函數?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中點,M是CE的中點,N點在PB上,且4PN=PB.
(Ⅰ)證明:平面PCE⊥平面PAB;
(Ⅱ)證明:MN∥平面PAC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國內某知名連鎖店分店開張營業期間,在固定的時間段內消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效展開,參與抽獎活動的人數越來越多,該分店經理對開業前7天參加抽獎活動的人數進行統計,表示開業第
天參加抽獎活動的人數,得到統計表格如下:
經過進一步的統計分析,發現與
具有線性相關關系.
(1)根據上表給出的數據,用最小二乘法,求出與
的線性回歸方程
;
(2)若該分店此次抽獎活動自開業始,持續10天,參加抽獎的每位顧客抽到一等獎(價值200元獎品)的概率為,抽到二等獎(價值100元獎品)的概率為
,抽到三等獎(價值10元獎品)的概率為
,試估計該分店在此次抽獎活動結束時送出多少元獎品?
參考公式:,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com