精英家教網 > 高中數學 > 題目詳情
已知A、B、C是直線l上不同的三點,O是l外一點,向量滿足:記y=f(x).
(1)求函數y=f(x)的解析式:
(2)若對任意不等式恒成立,求實數a的取值范圍:
(3)若關于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數b的取值范圍.
(1);(2);(3).

試題分析:(1)根據條件中以及A,B,C三點共線可得,從而求得y的解析式;(2)要使上恒成立,只需,通過求導判斷的單調性即可求得上的最大值,從而得到a的取值范圍;(3)題中方程等價于,因此要使方程有兩個不同的實根,只需求得在(0,1]上的取值范圍即可,通過求導判斷單調性顯然可以得到在(0,1]上的取值情況.
(1),
又∵A,B,C在同一直線上,∴,則,
    4分
(2)①    5分
依題意知上恒成立,
∴h(x)在上是增函數,要使不等式①成立,當且僅當.    8分;
(3)方程即為變形為
,
    10分
列表寫出 x,在[0,1]上的變化情況:
 
x
 
0
(0,)

(,1)
 
1

 
小于0
取極小值
大于0
 
 

 
ln2
 
單調遞減

 
單調遞增

顯然?g(x)在(0,1]上的極小值也即為它的最小值.    12分
現在比較ln2與的大小;

∴要使原方程在(0,1]上恰有兩個不同的實根,必須使
即實數b的取值范圍為    14分.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數的圖象過坐標原點O,且在點處的切線的斜率是.
(1)求實數的值;
(2)求在區間上的最大值;
(3)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知,其中e為自然對數的底數.
(1)若是增函數,求實數的取值范圍;
(2)當時,求函數上的最小值;
(3)求證:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數是定義在上的奇函數,當時, (其中e是自然界對數的底,)
(1)求的解析式;
(2)設,求證:當時,且,恒成立;
(3)是否存在實數a,使得當時,的最小值是3 ?如果存在,求出實數a的值;如果不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x2-(1+2a)x+aln x(a為常數).
(1)當a=-1時,求曲線y=f(x)在x=1處切線的方程;
(2)當a>0時,討論函數y=f(x)在區間(0,1)上的單調性,并寫出相應的單調區間.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)若當時,函數的最大值為,求的值;
(2)設為函數的導函數),若函數上是單調函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


(1)若求函數的極值點及相應的極值;
(2)若對任意恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數
(1)當時,求函數的最小值;
(2)證明:對,都有;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的單調減區間是     

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视