【題目】從4名書法比賽一等獎的同學和2名繪畫比賽一等獎的同學中選出2名志愿者,參加某項服務工作.
(1)求選出的兩名志愿者都是獲得書法比賽一等獎的同學的概率;
(2)求選出的兩名志愿者中一名是獲得書法比賽一等獎,另一名是獲得繪畫比賽一等獎的同學的概率.
【答案】(1) (2)
【解析】
解:把4名獲書法比賽一等獎的同學編號為1,2,3,4,2名獲繪畫比賽一等獎的同學編號為5,6. 從6名同學中任選兩名的所有可能結果如下:(1,2),(1,3),(1,4),(1,5)(1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15個.
(1) 從6名同學中任選兩名,都是書法比賽一等獎的所有可能是:
(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6個.
∴選出的兩名志愿者都是書法比賽一等獎的概率
(2) 從6名同學中任選兩名,一名是書法比賽一等獎,另一名是繪畫比賽一等獎的所有可能是:
(1,5), (1,6), (2,5), (2,6), (3,5),(3,6),(4,5),(4,6),共8個.
∴選出的兩名志愿者一名是書法比賽一等獎,另一名是繪畫比賽一等獎的概率是
科目:高中數學 來源: 題型:
【題目】如圖,某生態園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為的長度均大于200米,現在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,造價均為每平方米100元.若圍圍墻用了20000元,問如何圍可使竹籬笆用料最。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系xOy中,直線C1的參數方程為(t為參數),以該直角坐標系的原點O為極點,x軸的正半軸為極軸的極坐標系下,圓C2的方程為ρ=﹣2cosθ+2
sinθ.
(Ⅰ)求直線C1的普通方程和圓C2的圓心的極坐標;
(Ⅱ)設直線C1和圓C2的交點為A,B,求弦AB的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一張矩形白紙ABCD,AB=10,AD=,E,F分別為AD,BC的中點,現分別將△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同側,下列命題正確的是____________(寫出所有正確命題的序號)
①當平面ABE∥平面CDF時,AC∥平面BFDE
②當平面ABE∥平面CDF時,AE∥CD
③當A、C重合于點P時,PG⊥PD
④當A、C重合于點P時,三棱錐P-DEF的外接球的表面積為150
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
上的點均在曲線
外,且對
上任意一點
,
到直線
的距離等于該點與曲線
上點的距離的最小值.
(1)求動點的軌跡
的方程;
(2)若點是曲線
的焦點,過
的兩條直線
關于
軸對稱,且分別交曲線
于
,若四邊形
的面積等于
,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com