【題目】已知定義域為R的奇函數y=f(x)的導函數為y=f′(x),當x≠0時, >0,若a=f(1),b=﹣2f(﹣2),c=(ln
)f(ln
),則a,b,c的大小關系正確的是( )
A.a<c<b
B.b<c<a
C.a<b<c
D.c<a<b
【答案】D
【解析】解:設g(x)=xf(x), ;
∵x≠0時, ;
∴x>0時,g′(x)>0;
∴g(x)在(0,+∞)上單調遞增;
∵f(x)為奇函數;
∴b=﹣2f(﹣2)=2f(2), ;
又a=f(1)=1f(1);
∵ln2<1<2,g(x)在(0,+∞)上單調遞增;
∴g(ln2)<g(1)<g(2);
即(ln2)f(ln2)<1f(1)<2f(2);
∴c<a<b.
故選:D.
根據a,b,c的表示形式構造函數g(x)=xf(x),根據條件可說明x>0時,g′(x)>0,這便得到g(x)在(0,+∞)上單調遞增.而由f(x)為奇函數便可得到b=2f(2),c=(ln2)f(ln2),而容易判斷ln2<1<2,從而得到g(ln2)<g(1)<g(2),這樣便可得出a,b,c的大小關系.
科目:高中數學 來源: 題型:
【題目】長方體ABCD-A1B1C1D1中,AB=BC=2,D1D=3,點M是B1C1的中點,點N是AB的中點.建立如圖所示的空間直角坐標系.
(1)寫出點D、N、M的坐標;
(2)求線段MD、MN的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐P-ABCD的底面ABCD是正方形,E,F分別為AC和PB上的點,它的直觀圖,正視圖,側視圖如圖所示.
(1)求EF與平面ABCD所成角的大。
(2)求二面角B-PA-C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分別是AC,AB上的點,且DE∥BC,DE=4,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(1)求證:平面
;
(2)過點E作截面
平面
,分別交CB于F,
于H,求截面
的面積。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O1的方程為x2+(y+1)2=4,圓O2的圓心為O2(2,1).
(1)若圓O1與圓O2外切,求圓O2的方程;
(2)若圓O1與圓O2交于A,B兩點,且|AB|=2,求圓O2的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC中,A(0,1),AB邊上的高CD所在直線的方程為x+2y-4=0,AC邊上的中線BE所在直線的方程為2x+y-3=0.
(1)求直線AB的方程;
(2)求直線BC的方程;
(3)求△BDE的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在底面為平行四邊形的四棱錐P﹣ABCD中,PA⊥平面ABCD,且BC=2AB═4,∠ABC=60°,點E是PD的中點.
(1)求證:AC⊥PB;
(2)當二面角E﹣AC﹣D的大小為45°時,求AP的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com