【題目】如圖,在四棱錐中,
底面
是
的中點.
(1)證明:平面
;
(2)求和平面
所成的角的正切值.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)由為等邊三角形可得
,于是
,通過證明
平面
得出
,故而
平面
;(2)取
中點
,連接
,則可證明
平面
,故
為
與平面
所成的角,利用勾股定理求出
,
即可得出
.
試題解析:(1)∵在中,
,
∴為等邊三角形,∴
…………(1分)
∵在中,
是
的中點,∴
∵與
為平面
內兩條相交直線,∴
平面
…………(4分)
∵平面
,∴
∵與
為平面
內兩條相交直線,∴
平面
…………(6分)
(2)取中點
,連接
、
,設
∵在中,
為
中點,∴
∵底面
底面
,∴
∵與
為平面
內兩條相交直線,∴
平面
∴為
在平面
內的射影,∴
為
和平面
所成的角…………(9分)
∵底面
底面
,∴
∵,∴
∴在中,
∴和平面
所成的角的正切值為
…………(12分)
科目:高中數學 來源: 題型:
【題目】如圖,已知圓,點
,
是圓
上任意一點,線段
的垂直平分線和半徑
相交于
.
(1)求動點的軌跡
的方程;
(2)設直線與(Ⅰ)中軌跡
相交于
,
兩點,直線
,
,
的斜率分別為
,
,
(其中
),
的面積為
,以
,
為直徑的圓的面積分別為
,
,若
,
,
恰好構成等比數列,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下有五個步驟:①撥號;②提起話筒(或免提功能);③開始通話或掛機(線路不通);④等復話方信號;⑤結束通話.試寫出一個打本地電話的算法________.(只寫編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,過原點的直線
與其交于不同的兩點
.
(1)求直線斜率
的取值范圍;
(2)求線段的中點
的軌跡
的方程;
(3)若直線與曲線
只有一個公共點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD為直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中點.
(1)求證:BE∥平面PAD;
(2)若AP=2AB,求證:BE⊥平面PCD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列關于框圖的邏輯結構的說法正確的是
A. 條件結構中不含有順序結構
B. 用順序結構畫出的電水壺燒開水的框圖是唯一的
C. 條件結構中一定有循環結構
D. 循環結構中一定包含條件結構
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,已知四邊形為直角梯形,
,
,
,
為等邊三角形,
,
,如圖2,將
,
分別沿
折起,使得平面
平面
,平面
平面
,連接
,設
為
上任意一點.
(1)證明:平面
;
(2)若,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com