【題目】已知關于x的一元二次方程x2+ax+b2=0.
(1)若a是從0,1,2,3四個數中任取的一個數,b是從0,1,2三個數中任取的一個數,求上述方程有實根的概率;
(2)若a是從區間[0,3]上任取的一個實數,b是從區間[0,2]上任取的一個實數,求上述方程有實根的概率.
【答案】(1);(2)
【解析】
(1)先用列舉法求得基本事件的總數,根據判別式為非負數求得的關系式,由此判斷出符合題意的事件有
個,進而求得所求的概率.(2)判別式為非負數求得
的關系式,畫出全部結果所構成的區域,利用幾何概型的計算公式,計算出所求的概率.
(1)若a是從0,1,2,3四個數中任取的一個數,b是從0,1,2三個數中任取的一個數,
則基本事件共12個,分別為:
(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),
(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).
設事件A為“方程x2+ax+b2=0有實根”,則判別式Δ=a2–4b2≥0,即a≥2b,
若a=0,則b=0;若a=1,則b=0;
若a=2,則b=0或b=1;若a=3,則b=0或b=1.
共包含6個基本事件,則所求的概率P1=.
(2)記事件B為“方程x2+ax+b2=0有實根”.由Δ=a2–4b2≥0,且非負,得a≥2b,
全部結果所構成的區域為{(a,b)|0≤a≤3,0≤b≤2},其面積為S=3×2=6.
構成事件A的區域為{(a,b)|0≤a≤3,0≤b≤2,a≥2b},
則D(3,),其面積為S′=
×3×
=
,
所以所求的概率P2==
.
科目:高中數學 來源: 題型:
【題目】某縣畜牧技術員張三和李四9年來一直對該縣山羊養殖業的規模進行跟蹤調查,張三提供了該縣某山羊養殖場年養殖數量y(單位:萬只)與相成年份x(序號)的數據表和散點圖(如圖所示),根據散點圖,發現y與x有較強的線性相關關系,李四提供了該縣山羊養殖場的個數z(單位:個)關于x的回歸方程.
(1)根據表中的數據和所給統計量,求y關于x的線性回歸方程(參考統計量:);
(2)試估計:①該縣第一年養殖山羊多少萬只?
②到第幾年,該縣山羊養殖的數量與第一年相比縮小了?
附:對于一組數據,其回歸直線
的斜率和截距的最小二乘估計分別為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來隨著我國在教育科研上的投入不斷加大,科學技術得到迅猛發展,國內企業的國際競爭力得到大幅提升.某品牌公司一直默默拓展海外市場,在海外設了多個分支機構,現需要國內公司外派大量中青年員工.該企業為了解這兩個年齡層員工是否愿意被外派工作的態度,按分層抽樣的方式從中青年員工中隨機調查了位,得到數據如下表:
愿意被外派 | 不愿意被外派 | 合計 | |
中年員工 | |||
青年員工 | |||
合計 |
由并參照附表,得到的正確結論是
附表:
0.10 | 0.01 | 0.001 | |
2.706 | 6.635 | 10.828 |
A. 在犯錯誤的概率不超過10%的前提下,認為 “是否愿意外派與年齡有關”;
B. 在犯錯誤的概率不超過10%的前提下,認為 “是否愿意外派與年齡無關”;
C. 有99% 以上的把握認為“是否愿意外派與年齡有關”;
D. 有99% 以上的把握認為“是否愿意外派與年齡無關”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】空氣質量指數AQI是一種反映和評價空氣質量的方法,AQI指數與空氣質量對應如表所示:
AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | 300以上 |
空氣質量 | 優 | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
如圖是某城市2018年12月全月的AQI指數變化統計圖:
根據統計圖判斷,下列結論正確的是( )
A. 整體上看,這個月的空氣質量越來越差
B. 整體上看,前半月的空氣質量好于后半個月的空氣質量
C. 從AQI數據看,前半月的方差大于后半月的方差
D. 從AQI數據看,前半月的平均值小于后半月的平均值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數的定義域為D,若函數
滿足條件:存在
,使
在
上的值域為
,則稱
為“倍縮函數”,若函數
為“倍縮函數”,則實數
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠家具車間做A,B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A,B型桌子分別需要1小時和2小時,漆工油漆一張A,B型桌子分別需要3小時和1小時;又知木工和漆工每天工作分別不得超過8小時和9小時,設該廠每天做A,B型桌子分別為x張和y張.
(1)試列出x,y滿足的關系式,并畫出相應的平面區域;
(2)若工廠做一張A,B型桌子分別獲得利潤為2千元和3千元,那么怎樣安排A,B型桌子生產的張數,可使得所得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知甲、乙、丙、丁、戊、己6人.(以下問題用數字作答)
(1)邀請這6人去參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的安排方法?
(2)將這6人作為輔導員全部安排到3項不同的活動中,求每項活動至少安排1名輔導員的方法總數是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
.
(1)若函數在
處取得極值,求實數
的值;
(2)在(1)的結論下,若關于的不等式
,當
時恒成立,求
的值;
(3)令,若關于
的方程
在
內至少有兩個解,求出實數
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》第八章“方程”問題八:今有賣牛二、羊五,以買十三豕,有余錢一千。賣牛三、豕三,以買九羊,錢適足.賣羊六、豕八,以買五牛,錢不足六百.問牛、羊、豕各幾何?“如果賣掉2頭牛和5只羊,可買13口豬,還余1000錢;賣掉3頭牛和3口豬的錢恰好可買9只羊;而賣掉6只羊和8口豬,去買5頭牛,還少600錢.問牛、羊、豬的價格各是多少”.按照題意,可解出牛______錢、羊______錢、豬______錢.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com