【題目】已知數列滿足
.
(1)若(
且
),數列
為遞增數列,求數列
的通項公式;
(2)若(
且
),數列
為遞增數列,數列
為遞減數列,且
,求數列
的通項公式.
【答案】(1);(2)
.
【解析】分析:(1)因為數列為遞增數列,故可得
,轉化為
,結合
,可得數列
是首項
,公差為1的等差數列,進而可得結果;(2)利用和(1)前半部分相同的思想可得
和
成立,緊接著分為
為奇數或者
為偶數即可.
詳解:(1)因為數列為遞增數列,所以
,即
,
,由條件,
,
所以,
即數列是首項
,公差為1的等差數列,
則.
(2)因為數列為遞增數列,
所以,即
,
,由條件
,
,
得(絕對值大的必為正數),
,
同理,數列為遞減數列,所以
,即
,
,由條件,
,
,
得(絕對值大的必為負數),
,
而,則
,
綜上可知,當為奇數且
時,
;
當為偶數時,
.
當為奇數且
時,
,
當時,
也成立,
即當為奇數時,
,
當為偶數時,
為奇數,
,
所以.
科目:高中數學 來源: 題型:
【題目】己知n為正整數,數列{an}滿足an>0,4(n+1)an2﹣nan+12=0,設數列{bn}滿足bn=
(1)求證:數列{ }為等比數列;
(2)若數列{bn}是等差數列,求實數t的值:
(3)若數列{bn}是等差數列,前n項和為Sn , 對任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求滿足條件的所有整數a1的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當,
時,求滿足
的
的值;
(2)若函數是定義在
上的奇函數.
①存在,使得不等式
有解,求實數
的取值范圍;
②若函數滿足
,若對任意
且
,不等式
恒成立,求實數
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一年級學生全部參加了體育科目的達標測試,現從中隨機抽取40名學生的測試成績,整理數據并按分數段,
,
,
,
,
進行分組.已知測試分數均為整數,現用每組區間的中點值代替該組中的每個數據,則得到體育成績的折線圖如下:
(1)若體育成績大于或等于70分的學生為“體育良好”,已知該校高一年級有1000名學生,試估計該校高一年級學生“體育良好”的人數;
(2)用樣本估計總體的思想,試估計該校高一年級學生達標測試的平均分;
(3)假設甲、乙、丙三人的體育成績分別為,且
,
,
,當三人的體育成績方差
最小時,寫出
的所有可能取值(不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體的棱長為 1,
為
的中點,
為線段
上的動點,過點A、P、Q的平面截該正方體所得的截面記為
.則下列命題正確的是__________(寫出所有正確命題的編號).
①當時,
為四邊形;②當
時,
為等腰梯形;③當
時,
為六邊形;④當
時,
的面積為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
.
(I)判斷并證明函數的奇偶性;
(II)判斷并證明函數在
上的單調性;
(III)是否存在這樣的負實數,使
對一切
恒成立,若存在,試求出
取值的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代著名數學經典.其中對勾股定理的論術比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1尺.問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內的部分).已知弦尺,弓形高
寸,估算該木材鑲嵌在墻中的體積約為( )
(注:1丈=10尺=100寸, ,
)
A. 633立方寸 B. 620立方寸 C. 610立方寸 D. 600立方寸
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的一個焦點與上、下頂點構成直角三角形,以橢圓
的長軸長為直徑的圓與直線
相切.
(1)求橢圓的標準方程;
(2)設過橢圓右焦點且不平行于軸的動直線與橢圓
相交于
兩點,探究在
軸上是否存在定點
,使得
為定值?若存在,試求出定值和點
的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com