精英家教網 > 高中數學 > 題目詳情

【題目】已知雙曲線的左右焦點為為它的中心,為雙曲線右支上的一點,的內切圓圓心為,且圓軸相切于點,過作直線的垂線,垂足為,若雙曲線的離心率為,則( )

A.B.C.D.關系不確定

【答案】A

【解析】

F1(﹣c,0)、F2(c,0),內切圓與x軸的切點是點A

∵|PF1|﹣|PF2|=2a,及圓的切線長定理知,

|AF1|﹣|AF2|=2a,設內切圓的圓心橫坐標為x,

|(x+c)﹣(c﹣x)|=2a

∴x=a;

|OA|=a,

△PCF2中,由題意得,F2B⊥PIB,延長交F1F2于點C,利用△PCB≌△PF2B,可知PC=PF2,

在三角形F1CF2中,有:

OB=CF1=(PF1﹣PC)=(PF1﹣PF2)=×2a=a.

∴|OB|=|OA|.

故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若定義在R上的偶函數滿足,且, ,則函數的零點個數是( )

A. 6B. 8C. 2D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)求的圖像在處的切線方程;

2)求函數的極大值;

3)若恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的方程為,橢圓的離心率正好是雙曲線的離心率的倒數,橢圓的短軸長等于拋物線上一點到拋物線焦點的距離.

1)求橢圓的標準方程;

2)若直線與橢圓的兩個交點為,兩點,已知圓軸的交點分別為,(點軸的正半軸),且直線與圓相切,求的面積與的面積乘積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,、分別是、的中點.

1)設棱的中點為,證明:平面;

2)若,,,且平面平面,求三棱柱的高.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求函數的單調遞增區間;

(2)內角的對邊分別為,若,,且,試求角和角.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,在直角梯形ABCD,,,,將 沿折起,使平面平面,得到幾何體,如圖2所示.

1)求證:平面;

2)求二面角D-AB-C的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某家具公司生產甲、乙兩種書柜,制柜需先制白胚再油漆,每種柜的制造白胚工時數、油漆工時數的有關數據如下:

工藝要求

產品甲

產品乙

生產能力(工時/天)

制白胚工時數

6

12

120

油漆工時數

8

4

64

單位利潤

20

24

則該公司合理安排這兩種產品的生產,每天可獲得的最大利潤為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在貫徹中共中央、國務院關于精準扶貧政策的過程中,某單位在某市定點幫扶甲、乙兩村各戶貧困戶.為了做到精準幫扶,工作組對這戶村民的年收入情況、勞動能力情況.子女受教育情況、危舊房情況、患病情況等進行調查.并把調查結果轉化為各戶的貧困指標.將指標按照,,,,分成五組,得到如圖所示的頻率分布直方圖.規定若,則認定該戶為“絕對貧困戶”,否則認定該戶為“相對貧困戶”,且當時,認定該戶為“低收入戶”;當時,認定該戶為“亟待幫助戶".已知此次調查中甲村的“絕對貧困戶”占甲村貧困戶的.

1)完成下面的列聯表,并判斷是否有的把握認為絕對貧困戶數與村落有關:

甲村

乙村

總計

絕對貧困戶

相對貧困戶

總計

2)某干部決定在這兩村貧困指標處于的貧困戶中,隨機選取戶進行幫扶,用表示所選戶中“亟待幫助戶”的戶數,求的分布列和數學期望.

附:,其中.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视