精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在四棱錐P-ABCD中,是等腰三角形,且.四邊形ABCD是直角梯形,,,,,.

1)求證:平面PDC.

2)請在圖中所給的五個點P,A,BC,D中找出兩個點,使得這兩點所在直線與直線BC垂直,并給出證明.

3)當平面平面ABCD時,求直線PC與平面PAB所成角的正弦值.

【答案】1)詳見解答;(2,證明見解答;(3.

【解析】

1)由已知,即可證明結論;

2)根據已知條件排除,只有可能與垂直,根據已知可證;

3)利用垂直關系,建立空間直角坐標系,求出坐標和平面PAB的法向量,即可求解.

1平面平面,

平面;

2,證明如下:

中點,連,

,

,,

平面平面

平面,

3)平面平面ABCD,平面平面ABCD,

平面平面,

.四邊形ABCD是直角梯形,,

,

為坐標原點,以,過點與平行的直線分別為軸,

建立空間直角坐標系,則

,

設平面的法向量為

,即

,令,則,

平面一個法向量為,

設直線PC與平面PAB所成角為,

直線直線PC與平面PAB所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數方程為t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線l與曲線C交于不同的兩點AB.

1)求曲線C的參數方程;

2)若點P為直線與x軸的交點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法錯誤的是(

A.命題,則的逆否命題為,則

B.命題,是假命題

C.若命題、均為假命題,則命題為真命題

D.是定義在R上的函數,則是奇函數的必要不允分條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】新高考最大的特點就是取消文理科,除語文、數學、外語之外,從物理、化學、生物、政治、歷史、地理這科中自由選擇三門科目作為選考科目.某研究機構為了了解學生對全理(選擇物理、化學、生物)的選擇是否與性別有關,覺得從某學校高一年級的名學生中隨機抽取男生,女生各人進行模擬選科.經統計,選擇全理的人數比不選全理的人數多.

1)請完成下面的列聯表;

2)估計有多大把握認為選擇全理與性別有關,并說明理由;

3)現從這名學生中已經選取了男生名,女生名進行座談,從中抽取名代表作問卷調查,求至少抽到一名女生的概率.

附:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(題文)已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以下四個結論,正確的是(

①質檢員從勻速傳遞的產品生產流水線上,每間隔15分鐘抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;

②在回歸直線方程中,當變量每增加一個單位時,變量增加0.13個單位;

③在頻率分布直方圖中,所有小矩形的面積之和是1;

④對于兩個分類變量,求出其統計量的觀測值,觀測值越大,我們認為有關系的把握程度就越大.

A.②④B.②③C.①③D.③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分10分)選修44,坐標系與參數方程

已知曲線,直線為參數).

I)寫出曲線的參數方程,直線的普通方程;

II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年上半年我國多個省市暴發了非洲豬瘟疫情,生豬大量病死,存欄量急劇下降,一時間豬肉價格暴漲,其他肉類價格也跟著大幅上揚,嚴重影響了居民的生活.為了解決這個問題,我國政府一方面鼓勵有條件的企業和散戶防控疫情,擴大生產;另一方面積極向多個國家開放豬肉進口,擴大肉源,確保市場供給穩定.某大型生豬生產企業分析當前市場形勢,決定響應政府號召,擴大生產決策層調閱了該企業過去生產相關數據,就一天中一頭豬的平均成本與生豬存欄數量之間的關系進行研究.現相關數據統計如下表:

生豬存欄數量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究員甲根據以上數據認為具有線性回歸關系,請幫他求出關于的線.性回歸方程(保留小數點后兩位有效數字)

2)研究員乙根據以上數據得出的回歸模型:.為了評價兩種模型的擬合效果,請完成以下任務:

①完成下表(計算結果精確到0.01元)(備注:稱為相應于點的殘差);

生豬存欄數量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估計值

殘差

模型乙

估計值

3.2

2.4

2

1.76

1.4

殘差

0

0

0

0.14

0.1

②分別計算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個模型擬合效果更好.

3)根據市場調查,生豬存欄數量達到1萬頭時,飼養一頭豬每一天的平均收入為7.5元;生豬存欄數量達到1.2萬頭時,飼養一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計算一天中一頭豬的平均成本,問該生豬存欄數量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)

參考公式:.

參考數據:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1A1D的中點.

1)證明:MN∥平面C1DE;

2)求點C到平面C1DE的距離.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视