【題目】已知函數,
(1)討論在
上的單調性.
(2)當時,若
在
上的最大值為
,證明:函數
在
內有且僅有2個零點.
科目:高中數學 來源: 題型:
【題目】九章算術
是我國古代著名數學經典
其中對勾股定理的論述比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小
以鋸鋸之,深一寸,鋸道長一尺
問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深一寸,鋸道長一尺
問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示
陰影部分為鑲嵌在墻體內的部分
已知弦
尺,弓形高
寸,估算該木材鑲嵌在墻中的體積約為( )(注:1丈
尺
寸,
,
)
A. 600立方寸 B. 610立方寸 C. 620立方寸 D. 633立方寸
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知矩形,
,
,將
沿對角線
進行翻折,得到三棱錐
,則在翻折的過程中,有下列結論:
①三棱錐的體積最大值為
;
②三棱錐的外接球體積不變;
③三棱錐的體積最大值時,二面角
的大小是
;
④異面直線與
所成角的最大值為
.
其中正確的是( )
A.①②④B.②③C.②④D.③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設n為正整數,集合A=.對于集合A中的任意元素
和
,記
M()=
.
(Ⅰ)當n=3時,若,
,求M(
)和M(
)的值;
(Ⅱ)當n=4時,設B是A的子集,且滿足:對于B中的任意元素,當
相同時,M(
)是奇數;當
不同時,M(
)是偶數.求集合B中元素個數的最大值;
(Ⅲ)給定不小于2的n,設B是A的子集,且滿足:對于B中的任意兩個不同的元素,
M()=0.寫出一個集合B,使其元素個數最多,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線,雙曲線
的左、右焦點分別為F1,F2,M是雙曲線C2的一條漸近線上的點,且OM⊥MF2,O為坐標原點,若
,且雙曲線C1,C2的離心率相同,則雙曲線C2的實軸長是 ( )
A. 32 B. 4 C. 8 D. 16
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,函數f(x)=2cosxsin(x﹣A)+sinA(x∈R)在x=處取得最大值.
(1)當時,求函數f(x)的值域;
(2)若且sinB+sinC=
,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,設
.
(1)如果曲線與曲線
在
處的切線平行,求實數
的值;
(2)若對,都有
成立,求實數
的取值范圍;
(3)已知存在極大值與極小值,請比較
的極大值與極小值的大小,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以直角坐標系的原點為極點,x軸的非負半軸為極軸,建立極坐標系,并在兩種坐標系中取相同的長度單位,已知直線l的參數方程為(t為參數),圓C的極坐標方程為
(1)求直線l和圓C的直角坐標方程;
(2)若點在圓C上,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com