如圖,已知橢圓的上、下頂點分別為
,點
在橢圓上,且異于點
,直線
與直線
分別交于點
,
(Ⅰ)設直線的斜率分別為
,求證:
為定值;
(Ⅱ)求線段的長的最小值;
(Ⅲ)當點運動時,以
為直徑的圓是否經過某定點?請證明你的結論.
(Ⅰ);(Ⅱ)
;(Ⅲ)
或
.
解析試題分析:(Ⅰ)隨點
運動而變化,故設點
表示
,進而化簡整體消去變量;(Ⅱ)點
的位置由直線
,
生成,所以可用兩直線方程解出交點坐標,求出
,它必是
的函數,利用基本不等式求出最小值; (Ⅲ)利用
的坐標求出圓的方程,方程必含有參數
,消去一個后,利用等式恒成立方法求出圓所過定點坐標.
試題解析:(Ⅰ),令
,則由題設可知
,
∴直線的斜率
,
的斜率
,又點
在橢圓上,
所以,(
),從而有
.
(Ⅱ)由題設可以得到直線的方程為
,
直線的方程為
,
由, 由
,
直線
與直線
的交點
,直線
與直線
的交點
.
又,
等號當且僅當即
時取到,故線段
長的最小值是
.
(Ⅲ)設點是以
為直徑的圓上的任意一點,則
,故有
,又
,所以以
為直徑的圓的方程為
,令
解得
,
以為直徑的圓是否經過定點
和
.
考點:直線的交點,圓的方程,圓過定點問題,基本不等式的應用.
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知圓,圓
,動圓
與圓
外切并且與圓
內切,圓心
的軌跡為曲線
。
(Ⅰ)求的方程;
(Ⅱ)是與圓
,圓
都相切的一條直線,
與曲線
交于
,
兩點,當圓
的半徑最長是,求
。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點的坐標分別是
、
,直線
相交于點
,且它們的斜率之積為
.
(1)求點軌跡
的方程;
(2)若過點的直線
與(1)中的軌跡
交于不同的兩點
,試求
面積的取值范圍(
為坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的長軸兩端點分別為
,
是橢圓上的動點,以
為一邊在
軸下方作矩形
,使
,
交
于點
,
交
于點
.
(Ⅰ)如圖(1),若,且
為橢圓上頂點時,
的面積為12,點
到直線
的距離為
,求橢圓的方程;
(Ⅱ)如圖(2),若,試證明:
成等比數列.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左右焦點分別為
,且經過點
,
為橢圓上的動點,以
為圓心,
為半徑作圓
.
(1)求橢圓的方程;
(2)若圓與
軸有兩個交點,求點
橫坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的離心率等于
,點P
在橢圓上。
(1)求橢圓的方程;
(2)設橢圓的左右頂點分別為
,過點
的動直線
與橢圓
相交于
兩點,是否存在定直線
:
,使得
與
的交點
總在直線
上?若存在,求出一個滿足條件的
值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系.已知曲線
的極坐標方程為
,直線
的參數方程為
為參數,
).
(Ⅰ)化曲線的極坐標方程為直角坐標方程;
(Ⅱ)若直線經過點
,求直線
被曲線
截得的線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的焦點
以及橢圓
的上、下焦點及左、右頂點均在圓
上.
(1)求拋物線和橢圓
的標準方程;
(2)過點的直線交拋物線
于
兩不同點,交
軸于點
,已知
,求
的值;
(3)直線交橢圓
于
兩不同點,
在
軸的射影分別為
,
,若點
滿足
,證明:點
在橢圓
上.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com